UNIVERSITY EXAMINATIONS

EXAMINATION FOR JANUARY/APRIL 2015/2016 FOR BACHELOR OF SCIENCE IN COMPUTER SCIENCE

RCCS 103: CALCULUS (MATHEMATICS).
DATE: $8^{\text {th} / A p r i l / 2016 . ~}$
TIME: 2 HOURS
GENERAL INSTRUCTIONS:
Students are NOT permitted to write on the examination paper during reading time.
This is a closed book examination. Text book/Reference books/notes are not permitted.

SPECIAL INSTRUCTIONS:

This examination paper consists Questions in Section A followed by section B.
Answer Question 1 and any Other Two questions.
QUESTIONS in ALL Sections should be answered in answer booklet(s).

1. PLEASE start the answer to EACH question on a NEW PAGE. You will lose 5 MARKS if this is not done.
2. Keep your phone(s) switched off at the front of the examination room and NOT on your person.
3. Keep ALL bags and caps at the front of the examination room and DO NOT refer to ANY unauthorized material before or during the course of the examination.
4. ALWAYS show your working.
5. Marks indicated in parenthesis i.e. () will be awarded for clear and logical answers.
6. Write your REGISTRATION No. clearly on the answer booklet(s).
7. For the Questions, write the number of the question on the answer booklet(s) in the order you answered them.
8. Advanced Mathematics log table / Formulas will be provided.
9. Calculator will be required.

SECTION A (COMPULSORY)

QUESTION (1) - (30 MARKS)

a) Define the following terms?
i. Calculus.
ii. Integration.
iii. Differentiation
b) Evaluate following integrals.

$$
\begin{align*}
& \int \frac{x-3}{x^{2}-x-2} d x \tag{5Marks}\\
& \int_{0}^{\pi} \sin (x) d x
\end{align*}
$$

(3Marks)
c) Compute the limit for the function below. Show the working.

$$
\begin{equation*}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-4 x+3} \tag{5Marks}
\end{equation*}
$$

d) Given that a line is joined by two points $\mathrm{P} \& \mathrm{Q}$ (given below),

$$
P(-7,4) \text { and } \boldsymbol{Q}(5,-2)
$$

Determine the equation of the line perpendicular to line P, Q.
e) Acceleration of an object is expressed using the function below.

$$
a=\frac{\Delta v}{t}=7 t^{2}+5 t-3 .
$$

Find the speed of the object at time, $\mathrm{t}=2.3 \mathrm{sec}$.
f) Distinguish between the definite and indefinite integral
g) Calculate the volume of the solid generated by rotating the curve

$$
\begin{align*}
& y=2 x^{2}+3 x-6 . \text { Along the X-axis and bounded by the points } \\
& (x=3) \&(x=5) . \tag{6Marks}
\end{align*}
$$

SECTION B (Answer Any Two Questions)

Question (2) - (20Marks)
a) Find the real domain of the following functions.
(4 Marks)
i.
$f(x)=\frac{12 x}{x^{2}-36}$
ii. $f(x)=\frac{\sqrt{x+2}}{x-4}$
b) Determine the slope (Gradient) of the following lines.
(4 Marks)
i. $y=10-7 x$.
ii. $y=x^{2}+6 x-9$.
c) Integrate the functions below.
(5 Marks)
i. $\int 3 x^{2} \sin \left(x^{3}+1\right) d x$
(4 Marks)
ii. $\quad \int_{0}^{2 \pi} 2 x^{3}+3 x-6 d x$
d) Determine algebraically, from the first principle, the gradient of the curve below.

$$
y=7 x^{2}+4 x-3
$$

Question (3) - (20Marks)

a) Explain the meaning of following terms.
(5Marks)
i. Derivative.
ii. Turning point.
iii. Point of inflexion.
iv. Maxima.
v. Minima.
b) Use logarithmic differentiation to evaluate the derivative of the function below.
(5 Marks)

$$
y=\frac{x^{2}+1}{x^{3}(x-1)^{2}}
$$

c) The following function represents an exponential series.

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \ldots,-\infty<x<\infty
$$

Prove that if $\quad y=e^{x}$ then $\frac{d y}{d x}=e^{x}$
(4Marks)
d) Solve the following integral. Clearly illustrate your solution.

$$
\int_{3}^{10} \sqrt[3]{x-1} d x
$$

$\int \sin ^{2} x d x . \quad$ Given that $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$

Question (4) - (20Marks)

a) Considering the function below

$$
y=\frac{x^{3}}{2}-\frac{x^{2}}{4}-6 x+3
$$

Evaluate
i. Maximum turning point.
ii. Minimum turning point.
iii. Inflexion points (if they exist).
b) From the first principle, prove that if, $y=\sin x$ then $\frac{d y}{d x}=\cos x \cdot(8$ Marks $)$

$$
\text { Given that, } \quad \sin \alpha \pm \sin \beta=2 \sin \left[\frac{(\alpha \pm \beta)}{2}\right] \cos \left[\frac{(\alpha \mp \beta)}{2}\right]
$$

c) Evaluate the derivatives of the following function.

$$
\begin{equation*}
y=3 x^{2} \cos 2 x \tag{4Marks}
\end{equation*}
$$

Question (5) - (20Marks)

a) Draft the graph for the equations/functions below.
(5 Marks)
i. Linear Function
$f(x)=\mathbf{x}$
ii. Parabola
$f(x)=\mathrm{x}^{2}$
iii. Hyperbola
$f(x)=\frac{1}{x}$
iv. Square Root Function $f(x)=\sqrt{x}$
v. Cubic
$f(x)=\mathrm{x}^{3}$
b) Solve the following integral.
(4 Marks)

$$
\int_{\pi}^{2 \pi} 3 x^{3}+5 x^{2}+7 x+9 d x
$$

c) Find the area of the region bounded by the functions below.
(8 Marks)

$$
\begin{aligned}
& y=x^{2}-9 x+28 \\
& y=3 x+14
\end{aligned}
$$

d) Solve the integral function below.

$$
\begin{equation*}
\int(5 x-4)^{6} d x \tag{3Marks}
\end{equation*}
$$

