

UNIVERSITY EXAMINATIONS EXAMINATION FOR SEPTEMBER/DECEMBER 2015/2016 FOR BACHELOR OF SCIENCE IN COMPUTER SCIENCE

RCCS 103: CALCULUS (MATHEMATICS).

DATE: 4th December- 2015

TIME: 2 HOURS

GENERAL INSTRUCTIONS:

Students are NOT permitted to write on the examination paper during reading time. This is a closed book examination. Text book/Reference books/notes are not permitted.

SPECIAL INSTRUCTIONS:

This examination paper consists Questions in Section A followed by section B. Answer **Question 1 and any Other Two** questions.

QUESTIONS in ALL Sections should be answered in answer booklet(s).

- 1. PLEASE start the answer to EACH question on a NEW PAGE.
- 2. Keep your phone(s) switched off at the front of the examination room and NOT on your person.
- 3. Keep ALL bags and caps at the front of the examination room and DO NOT refer to ANY unauthorized material before or during the course of the examination.
- 4. ALWAYS show your working.
- 5. Marks indicated in parenthesis i.e. () will be awarded for clear and logical answers.
- 6. Write your REGISTRATION NO. Clearly on the answer booklet(s).
- 7. For the Questions, write the number of the question on the answer booklet(s) in the order you answered them.
- 8. DO NOT use your PHONE as a CALCULATOR.
- 9. YOU are ONLY ALLOWED to leave the exam room 30minutes to the end of the Exam.
- 10. Advanced Mathematics log table / Formulas will be provided.
- 11. Calculator will be required.

SECTION A (COMPULSORY)

QUESTION 1 (30 MARKS)

- a) Explain the following terms?
- i. Calculus.
- ii. Differentiation.
- iii. Gradient.
- iv. Integration.
- v. Integral.
- vi. Derivative.
- vii. Turning point.
- viii. Point of inflexion

b) Using suitable functions, compare definite and indefinite integrals. (4 Marks)

c) Given that
$$\tan x = \frac{\sin x}{\cos x}$$
 prove that $\frac{dy}{dx}(\tan x) = \sec^2 x$. (5 Marks)

d) Determine the slope (Gradient) of the following lines. (2 Marks) i. y = 3x + 5. ii. $y = \frac{1}{5}x + 3$.

- e) Differentiate the functions below. (4 Marks) i. $y = x^2 - 9x + 7$. ii. $y = \sin x \cos x$.
- f) Integrate the functions below.

$$\int_{0}^{7} 2x^{3} + 3x - 6. \, \mathrm{dx}$$
 (4 Marks)

g) Determine algebraically, from the first principle, the gradient of the curve below.

$$y = 3x^2 + 4.$$
 (3 Marks)

(8 Marks)

SECTION B (Answer Any Two Questions)

Question (2) - (20Marks)

a) Given that the exponential function can be expressed using the series below.

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} \dots, -\infty < x < \infty$$

Hence prove that $\frac{dy}{dx} (e^{x}) = e^{x}$ (6 Marks)

b) Given that
$$y = \frac{e^x + e^{-x}}{2} = coshx$$
 and $y = \frac{e^x - e^{-x}}{2} = sinhx$ (6 Marks)
Prove that $\frac{dy}{dx}(coshx) = sinhx$

c) Solve the following integral.

$$\int_{3}^{7} x^3 + 8x^2 + 4x + 2 \, dx$$

Question (3) - (20Marks)

a) Find the area of the shaded region bounded by the curves below. (10 Marks)

$$y = -x^{2} + 6 & y = x^{2} - 2x + 2$$

-5

(8 Marks)

Riara University - School of Computing Sciences

Page 4

b) Given that $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ integrate the function below. (5 Marks) $\int \sin^2 x \, dx.$

$$y = 7x^2 + 5x - 3$$
 (5 Marks)

c) From the *first Principal* determine the Gradient of the function below.

Question (4) - (20Marks)

a) Considering the function below

$$y = \frac{x^3}{3} - \frac{x^2}{2} - 2x + 5$$

Evaluate

- i. Maximum turning point.
- ii. Minimum turning point.
- iii. Inflexion points (if they exists).
- b) Evaluate the derivatives of the following functions.
 - i. $y = \frac{\tan x}{e^x}$ (4 Marks)
 - ii. $y = x^3 sinx$. (4 Marks)
 - iii. $y = \cosh(3x 7)$. (2 Marks)

(10 Marks)

Question (5) - (20Marks)

a. Determine the following integrals.

i.
$$\int \frac{x+1}{x^2 - 3x + 2} dx$$
 (5 Marks)

ii.
$$\int \frac{2x+3}{x^2+3x-5} dx$$
 (3 Marks)

iii.
$$\int (5x-4)^6 \, dx \qquad (3 \text{ Marks})$$

- b. Calculate the volume of the solid generated by rotating the curve $y = 2x^2 + 3x - 6$. Along the X-axis and bounded by the points (x = 3)&(x = 5). (5 Marks)
- c. Evaluate the area bounded by the function $y = 16x^2 + 17x 16$, the X-axis from (x = 0)&(x = 7). (4 Marks)