

UNIVERSITY EXAMINATIONS

EXAMINATION FOR JANUARY/APRIL 2015/2016 FOR BACHELOR OF SCIENCE IN COMPUTER SCIENCE

RCCS 108: COMPUTER ORGANIZATION & ASSEMBLY.

DATE: <u>4th/ April /2016.</u>

TIME: 2 HOURS

GENERAL INSTRUCTIONS:

Students are NOT permitted to write on the examination paper during reading time.

This is a closed book examination. Text book/Reference books/notes are not permitted.

SPECIAL INSTRUCTIONS:

This examination paper consists Questions in Section A followed by section B.

Answer **Question 1 and any Other Two** questions.

QUESTIONS in ALL Sections should be answered in answer booklet(s).

- 1. <u>PLEASE</u> start the answer to EACH question on a NEW PAGE. You will lose 5 MARKS if this is not done.
- 2. Keep your phone(s) switched off at the front of the examination room and NOT on your person.
- **3.** Keep ALL bags and caps at the front of the examination room and DO NOT refer to ANY unauthorized material before or during the course of the examination.
- 4. ALWAYS show your working.
- 5. Marks indicated in parenthesis i.e. () will be awarded for clear and logical answers.
- 6. Write your REGISTRATION No. clearly on the answer booklet(s).
- 7. For the Questions, write the number of the question on the answer booklet(s) in the order you answered them.
- 8. Calculator will be required.
- 9. Microprocessor Instruction Set will be provided

SECTION A (COMPULSORY)

Question (1) - (30Marks)

- a) Define the following terms.
 - i. S.M.A.R.T.
 - ii. R.A.I.D.
 - iii. B.I.O.S.
 - iv. S.C.I.S.
 - v. R.I.S.C.
 - vi. C.I.S.C.
 - vii. Machine Language.
 - viii. Macro Instructions.
 - ix. Micro Instructions.
 - x. Dynamic Execution
- b) Name types of buses found in computers, and hence explain the purpose of each.

(3 Marks)

c)	Describe the purpose of the Assembler, Interpreter, and Compiler.	(3 Marks)
d)	With respect to Intel's Instruction Set Architecture (ISA), list five categori instructions, and give example of each classification.	ies of (10 Marks)
e)	Describe in details, the <i>Fetch Execute cycle</i> of a microprocessor.	(4 Marks)

(You can use a timing diagram in describing, if necessary)

(10 Marks)

SECTION B (Answer Any Two Questions)

Question (2) - (20Marks)

- a) Differentiate between the high and low level programming languages; hence give two examples in each. (4 Marks)
- b) With reference to Intel-8085 microprocessor and using a suitable flow-chat, Write a program to add three numbers stored in the memory locations 3000_{Hex}, 3001_{Hex} & 3002_{Hex} respectfully, and then store the result of the operation in the memory location 3010_{Hex}. Hence Output the binary result Through Port A8_{Hex}.

(The instruction set for Intel 8085 will be provided at the back page). (10 Marks)

c) Highlight main differences between the Harvard and the Von Neumann architectures of computers CPUs.
(6 Marks)

Question (3) - (20Marks)

- a) With respect to Intel 8085 microprocessor, explain the functions of the following assembly instructions. (10 Marks)
 - i. ADC B **STA** FFFF_{hex} ii. iii. MOV M, C iv. DAA ν. **PUSH** B NOP vi. CALL FAAAhex vii. viii. **JNC** 2034_{hex} ix. **OUT** F8hex CMC х.
- b) State five addressing modes for the Intel x86 architecture, and hence give example of an instruction in each case. (10 Marks)

Question (4) - (20Marks)

- a) Using 4-chips of (16K X 8) and a suitable decoder, design a memory array of (64K x 8). Clearly show the data buses, address buses, and indicate the memory chips and their addresses range. (10 Marks)
- **b**) Name five types of networks and indicate the main communication medium used in each.

(5 Marks)

- c) Explain the meaning of the following terms as used in computer science. (5 Marks)
 - i. Polling.
 - ii. Pipelining.
 - iii. Hyper threading.
 - iv. Multiprocessing.
 - v. Parallel computing.

Question (5) - (20Marks)

- a) Microprocessors use registers to temporarily store data while processing. **(5 Marks)** Name the common registers used and specify how they are utilised.
- b) Describe the following types of Random Access Memories. (3 Marks)
 - i. SRAM.
 - ii. SDRAM.
 - iii. DDR-SDRAM
- c) A computer system has 32 bits address buses, 32 bits data buses, and 8 bit control buses.
 - i. What is the maximum size of the word can it handle? (1 Marks)
 - ii. What is the maximum size of RAM can the system address? (1 Marks)
- d) The program below test RAM by writing '1' (one) and reading it back and later writing '0' (Zero) and reading it back. It is meant to test the RAM addresses 4000H to 40FFH. In case of any error, it is indicated by lighting an LED diode connected to LSB of port 10H, by out-putting 01H to the port.

Assemble the program to determine how much of the RAM the program will require. (The instruction set for Intel 8085 will be provided at the back page). (10 Marks)

Source Program:

	LXI H, 4000 _{hex}	: Initialize memory pointer
BACK0:	MVI M, FF _{hex}	: Writing '1' into RAM
	MOV A, M	: Reading data from RAM
	CPI FFH	: Check for ERROR
	JNZ ERROR	: If yes go to ERROR
	INX H	: Increment memory pointer
	MOV A, H	
	CPI 00 _{hex}	: Check for last check
	JNZ BACKO	: If not last, repeat
	LXI H, 4000 _{hex}	: Initialize memory pointer
BACK1:	MVI M, OOH	: Writing '0' into RAM
	MOV A, M	: Reading data from RAM
	CPI 00 _{hex}	: Check for ERROR
	INX H	: Increment memory pointer
	MOV A, H	
	CPI 00 _{hex}	: Check for last check
	JNZ BACK1	: If not last, repeat
ERROR:	LDI A. 01 hex	: load error output value
-	OUT 10 hex	: output error value
	HLT	: Stop Execution

8080/85 CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE

OP CODF	MNEMONIC	OP CODE	MNEMONIC	OP CODE	MNEMONIC	OP CODL	MNLMONIC	OP CODE	MNEMONIC	OP CODE	MNEMONIC
00	NOP	2B	DCX Н	56	MOV D.M	81	ΔΟΡ Ο	AC	XRA H	D7	RST 2
01	I.XI B.D16	20	INR L	57	MOV D,A	82	ADD D	AD	XRA I.	D8	RC
02	STAX B	2D -	DCR L	58	MOV E,B	83	ADD E	AE	XRA M	09	
03	INX B	2E	MVI I.,D8	59	MOV E,C	84	ADD H	AF	XRA A	DA	JC. Adr
04	INR B	2F	СМА	5A.,	MOV E,D	85	ADD L	80	ÖRA B	DB	IN D8
05	OCR B	30	SIM	5B	MOV EL	86	ADD M	BI	ORA C	DC	CC Adr
.06	MVI B,D8	31	LXI SPD16	5C	MOV E,H	87	ADD A	82	ORA D	00	_
07	RLC	32	S1Á Ádr	5D	MOV E.L	88	ADC B	B3	ORA E	DE	5BI D8
08		.33	INX SP	5F	MOV E,M	89	ADC C	B 4	ORA II	Dł	RST 3
09	DAD B	.34	INR M	5F	MOV E,A	8A	ADC D	B 5	ORA L	E0	RPO
0A	Ì DA Χ́ Β	35	DCR M	60	MOV H,B	8B	ADC U	B6	ORA M	E1	РОР Н
08	DCX B	36	MVI M,D8	61	MOV H,C	8C	ÁDC II	B 7	ORA A	L2.	JPO Adr
-0C	INR C	37	STC	62	MOV 11,D	8D	ADC L	B8	СМР В	E3	XTHU
0D	ÐCR C	-38		63	MOV Ĥ,E	8E	ADC M	B 9	CMP C	C4	CPO Adr
0E	MVI C,D8	39	DAD SP	64	момінді	8F	ADC A	BA	CMP D	E5	PUSHH
OF	RRC	3A	EDA Adr	-65	MOV H,L	- 8G	SUB B	BB	СМР Е	E6	ANI D8
10		3B	DCX SP	66	мот н,м	91	SUB C	BC	СМР Н	£7	RST 4
11	LXI D,DI6	3C	INR A	67	MOV H,A	92	SUB D	BD	CMP L	F.8	RPE
12	STAX D	3D	DCR A	-68	MOV L.,B	93	SUB E	BE	СМР М	E9	PCHL
13	INX D	3E	MVI A,D8	69	MOV L,C	94	SUB H	BF	CMP A	ĽA	jPE Adr
14	INR D	.3F	CMĆ;	-6A	MOV L.,D	95	SUB I.	ĊÒ	RNZ	EB.	хсно
15	DCR D	-40	мот в,в	-68	MOV: L,E	96	SUB M	C1	POP B	EC	CPE Adr
16	MVI D,D8	41	MOV B,C	-6C	MOV LH	97	SUB A	C2	İNZ Adr	ED	
17	RAL.	42	MOV B,D	6D	MOV L.L	98	SBB B	C3	JMP Adr	£Ε	XRI D8
18		43	MOV B,E.	6E:	MOV L,M	.99	-58B C	C4	CNZ Adr	E.F.	RST 5
19	DAD D	44	МО√ В,Н	6F	MÖV L,Á	9A	SBB D	C.5	PUSH B	FO	RP
1/	LDAX D	45	MOV B.L	70	MOV M,B	9B	SBB E	C6	ADE D8	FL	POP PSW
1B	DCX D	46	MOV B,M	71	.MOV_M,C	9C	SBB H	C7	R\$1_0	F2	'JP Adi
1 C	INR E	47	MOV B,A	72	MOV M,D	90	SBB L	C8	RZ	F3	oi io
1D	DRCE	48	MOV C,B	7.3	MOV M,E	9E	SBB M	C9	RLI Adr	E4	CP Adr
1E	MVI E,D8	49	MOV-C,C	74	MOV: M,H	91	SBB A	CA	зz	F5	PUSH PSW
н	RAR	4A	MOV C,D	75	MOV M,È [A0	ANA B	СВ –		F6	ORI D8
20	RIM	-4B	MOV C,E	76	HLT	Â1	ANA C	CC	CZ Adr	17	RST 6
21	EXI 11,D16	4C	MOV C,H	.77	MOV M,A	A2	ANA D	CD	CALL Adr	+8	RM
,22	SIILD Adr	40	MOV. C,I.	78	ΜΟΥ Α,Β	A3	ANA E	CE	ACI D8	F9	SPHL.
23	INX H	-4E	MOV C,M	, 79	MOV A,C	A4	ANA H	CF	RST 1	FA	JM Ádr
24	INR H	-4F	MOV C,A	7 A	MOV A,D	AS	ANA L	100	RNC	۶B	EI
25	DCR H	50	MOV D,B	7B	ΜΟΥ Α,Ε	A6	ΑΝΛ Μ	-D1.	POP D	FC	CM Adr
26	MVI 11,D8	51	MOV DJC	7C	MOV A,II	A7	ANA A	D2	JNC Adr	FD	
27	DAA	52	MOV D,D	70	MOV [A],L	A8	XRA B	Đ3	OUT D8	FE	CP1 D8
28	·.	53	MOV D,E	7E	-MOV-A,M	A9	XRA C	D4	CNC Adr	EF	RST 7
29	DAD H	54	MOV D,H	71	MOV Á,A	AA	XRA D	D.5	PUSH D		
2A	THLD Adr	:55	MOV D.L.	80	ADD B	AB	XRA E	D6	SUI D8		

D8 = constant, or logical/arithmetic expression that evaluates D16 = constant, or logical/arithmetic expression that evalu to an 8 bit data quantity.

to a 16 bit data quantity

Adı = 16-bit address