

# **UNIVERSITY EXAMINATIONS**

### EXAMINATION FOR JANUARY/APRIL 2015/2016 FOR BACHELOR OF SCIENCE IN COMPUTER SCIENCE

#### RCCS 101: - DIGITAL LOGIC.

DATE: <u>13<sup>th</sup>/April /2016</u>.

TIME: 2 HOURS

#### **GENERAL INSTRUCTIONS:**

Students are NOT permitted to write on the examination paper during reading time.

This is a closed book examination. Text book/Reference books/notes are not permitted.

#### **SPECIAL INSTRUCTIONS:**

This examination paper consists Questions in Section A followed by section B.

Answer **Question 1 and any Other Two** questions.

QUESTIONS in ALL Sections should be answered in answer booklet(s).

- 1. <u>PLEASE</u> start the answer to EACH question on a NEW PAGE. You will lose 5 MARKS if this is not done.
- 2. Keep your phone(s) switched off at the front of the examination room and NOT on your person.
- **3.** Keep ALL bags and caps at the front of the examination room and DO NOT refer to ANY unauthorized material before or during the course of the examination.
- 4. ALWAYS show your working.
- 5. Marks indicated in parenthesis i.e. ( ) will be awarded for clear and logical answers.
- 6. Write your REGISTRATION No. clearly on the answer booklet(s).
- 7. For the Questions, write the number of the question on the answer booklet(s) in the order you answered them.
- 8. Calculator will be required.

## **SECTION A (COMPULSORY)**

### **Question (1) - (30Marks)**

a) Differentiate between Analog and Digital Signals.

- b) With respect to digital electronics circuits signals, define the following terms.
  - i. Rise time.
  - ii. Fall time.
  - iii. Propagation time.
  - iv. Fan out.
  - v. Fan in.
- c) Implement the Boolean expression below using suitable logic gates.

$$Y_{out} = [(AB) C+ (CDE) (BCE)].$$
 (5 Marks)

d) Considering the digital circuit below, derive the Boolean function (Q) that is an equivalent expression of the circuit. (5 Marks)



- e) Workout the following calculations. (Show the working) (6 Marks)
  - i. 11111111<sub>2</sub> + 456<sub>8</sub>
  - ii. BACB<sub>16</sub>+111001100011<sub>2</sub>
  - iii. 1357<sub>8</sub>+9BDF<sub>16</sub>

Results in decimal number. Results in decimal number. Results in Hexadecimal number.

- f) Describe the functions of the ADC and DAC in the digital and computer system. Hence give two types of ADC circuitry. (4 Marks)
- g) Define the De-Morgan's theorem, and show both variations of it. (3 Marks)

(2 Marks)

(5Marks)

### **SECTION B** (Answer Any Two Questions)

### **Question (2) - (20Marks)**

| a) | Express the following numbers in the specified Format. (4 Marks)                    |                                                                               |                    |                                   |           |
|----|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------|-----------------------------------|-----------|
|    | i.                                                                                  | 10101001 <sub>binary</sub>                                                    | -                  | into Gray Code.                   |           |
|    | ii.                                                                                 | 11010101 <sub>gray</sub>                                                      | -                  | into Binary.                      |           |
|    | iii.                                                                                | 1110010110012                                                                 | -                  | Octal number.                     |           |
|    | iv.                                                                                 | 1111010101012                                                                 | -                  | Two's complements.                |           |
| b) | Perform th                                                                          | the following calculations. (8 Marks)                                         |                    |                                   |           |
|    | i.                                                                                  | $1111_2 - 7_{10}$                                                             |                    | - Using twos complements.         |           |
|    | ii.                                                                                 | AFDE <sub>16</sub> + 79CDF <sub>16</sub> -Express the results in Hexadecimal. |                    |                                   |           |
|    | iii.                                                                                | 101110112 + 1011                                                              | L0111 <sub>2</sub> | - Express the results in Decimal. |           |
|    | iv.                                                                                 | 1010 <sub>2</sub> x 1111 <sub>2</sub>                                         |                    | - Express the results in Decimal. |           |
| c) | Name two                                                                            | e two universal gates used in the digital circuitry fabrication. (2 Marks)    |                    |                                   |           |
| d) | Using any universal gate of your choice, implement the following basic logic gates. |                                                                               |                    |                                   |           |
|    | i.                                                                                  | NOT Gate.                                                                     |                    |                                   | (1 Marks) |
|    | ii.                                                                                 | AND Gate.                                                                     |                    |                                   | (2 Marks) |

iii. OR Gate. (3 Marks)

# Question (3) - (20Marks)

- a) State uses of the Gray code in digital electronics/communication. (2 Marks)
- b) Design a four bit Binary to gray code converter circuit. NB you can use the K-Mapping method or the Boolean simplification method. Hence implement the logic circuit.

(12 Marks)

- c) Describe the functionalities of the following digital circuits. (6Marks)
  - i. Flip flop.
  - ii. Counters.
  - iii. Multiplexers.
  - iv. De-multiplexers.
  - v. Memory cell.
  - vi. Encoders

#### **Question (4) - (20Marks)**

a) Using *Karnaugh Mapping* technique of Boolean simplification, simplify the Boolean function below to the simplest term.
 (8 Marks)

 $Y_{Out} = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD + \overline{A}\overline{B}C\overline{D} + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}D + A\overline{B}CD + A\overline{B}C\overline{D}$ 

- b) Draw the basic logic gates, used in Digital electronics. Hence show their truth tables as well as the Boolean expressions.
  (7 Marks)
- c) Convert the following numbers, into the indicate number systems.

(5Marks)

| i.   | 13510                    | into binary number.      |
|------|--------------------------|--------------------------|
| ii.  | $2460_8$                 | into decimal number.     |
| iii. | 110000112                | into decimal number.     |
| iv.  | DAABC00 <sub>16</sub>    | into octal number.       |
| v.   | $10101111110101100010_2$ | into Hexadecimal number. |

#### Question (5) - (20Marks)

- a) Differentiate between a full adder and half adder. (4 Marks) (Use suitable block diagram)
- b) Design a full adder circuit, and implement the circuit using suitable gates. (8 Marks)
- c) Simplify the following digital circuit to the simplest circuit. (3 Marks)



- d) Select the collect choice, in the following multiple choice questions. (5 Marks)
  - i. How many JK Flip-Flops are required for mod-64 counter?
    - (A) 5. (B) 6. (C) 8.
    - (D) 4.

- ii. What is the binary equivalent of the decimal number 368?
  - (A) 101110000.(B) 110110000.
  - (C) 111010000.
  - (D) 111100000.
- iii. In which of the following gates, the output is 1, if at least one input is 1
  - (A) NOR.
  - (B) AND.
  - (C) OR.
  - (D) NAND.
- iv. The time required for a gate to change state is referred to as
  - (A) Fall time.
  - (B) Decay time.
  - (C) Propagation time.
  - (D) Rise time.
- v. Which of the following gates can be used in detecting Parity bits in error correction
  - (A) OR gate.
  - (B) AND gate.
  - (C) NOR gate.
  - (D) XOR gate.