

UNIVERSITY EXAMINATIONS EXAMINATION FOR SEPTEMBER/DECEMBER 2015/2016 FOR BACHELOR OF SCIENCE IN COMPUTER SCIENCE

RCCS 101: - DIGITAL LOGIC.

DATE: 30th November-2015

TIME: 2 HOURS

GENERAL INSTRUCTIONS:

Students are NOT permitted to write on the examination paper during reading time. This is a closed book examination. Text book/Reference books/notes are not permitted.

SPECIAL INSTRUCTIONS:

This examination paper consists Questions in Section A followed by section B. Answer **Question 1 and any Other Two** questions.

QUESTIONS in ALL Sections should be answered in answer booklet(s).

- 1. PLEASE start the answer to EACH question on a NEW PAGE.
- 2. Keep your phone(s) switched off at the front of the examination room and NOT on your person.
- 3. Keep ALL bags and caps at the front of the examination room and DO NOT refer to ANY unauthorized material before or during the course of the examination.
- 4. ALWAYS show your working.
- 5. Marks indicated in parenthesis i.e. () will be awarded for clear and logical answers.
- 6. Write your REGISTRATION NO. Clearly on the answer booklet(s).
- 7. For the Questions, write the number of the question on the answer booklet(s) in the order you answered them.
- 8. DO NOT use your PHONE as a CALCULATOR.
- 9. YOU are ONLY ALLOWED to leave the exam room 30minutes to the end of the Exam.
- 10. Calculator will be required.

SECTION A (COMPULSORY)

Question (1) - (30Marks)

a)	Defin	e the following terms?		(10 Marks)
		i. Multiplexers.ii. De-Multiplexers.iii. Encoder.iv. Decoders.v. D.S.P.		
b)	Using suitable truth tables prove the De-Morgan's Boolean identities.		(3 Marks)	
c)	Workout the following calculations. (Show the working)			(4 Marks)
	•	$BA7B_{16} + 11001100011_2$ $11111111_2 + 95_{10}$	Results in decimal num Results in decimal num	
d)	Implei			
		$Y_{out} = [(AB) C + (DE) (FG)].$		(3 Marks)
e)	In each of the question below, select the collect choice.			(10 Marks)
	i.	What is the binary equivalent of the (A) 101110000. (B) 110110000. (C) 111010000. (D) 111100000.	e decimal number 368?	
	ii.	How many Flip-Flops are required f (A) 5. (B) 6. (C) 3. (D) 4.	or mod–16 counter?	
	iii.	The Gray code for decimal number (A) 1100. (B) 1001. (C) 0101. (D) 0110.	6 is equivalent to	

- iv. in which of the following gates, the output is 1, if atleast one input is 1
 (A) NOR.
 (B) AND.
 - (C) OR.
 - (C) OIV.
 - (D) NAND.
- v. The time required for a gate to change state is reffered to as (A) Rise time.
 - (B) Decay time.
 - (C) Propagation time.
 - (D) Charging time.
- vi. The time required for a pulse to change from 10 to 90 percentof its maximum value is called.
 - (A) Rise time.
 - (B) Decay time.
 - (C) Propagation time.
 - (D) Operating speed.

vii. Odd parity of a word or a byte can detected using

- (A) OR gate.
- (B) AND gate.
- (C) NOR gate.
- (D) XOR gate.
- viii. The Boolean expression A.B+ A.B+ A.B is equivalent to
 - (A) A + B
 (B) A.B
 (C) A + B
 (D) A.B
- ix. The output of a logic gate is 1 when all its inputs are at logic 0. the gate is either
 - (A) NAND or EX-OR.(B) OR Gate or EX-NOR.(C) AND or EX-OR.(D) NOR or EX-NOR.
- x. With respect to ADCs the speed of conversion is maximum in.
 - (A) Successive-approximation A/D converter.
 - (B) Parallel-comparative A/D converter.
 - (C) Counter ramp A/D converter.
 - (D) Dual-slope A/D converter.

SECTION B (Answer Any Two Questions)

Question (2) - (20Marks)

a)	Differentiate between a full adder an	nd half adder.	(4 Marks)
b)	Describe two uses of the Gray code	in digital electronics.	(4 Marks)
c)	Using logic Boolean simplification of expression below. Y Output = {ABC + ABC + ABC	or the Karnaugh mapping, simplify th ⁷ + ABC}.	e Boolean (6 Marks)
d)	Using a suitable universal gate of yo NOR gates.	our choice, implement Exclusive-OR a	and Exclusive- (6 Marks)
Ques	tion (3) - (20Marks)		
a)	Perform conversion for the following i. 257_{10} ii. 3451_8 iii. BAF0B ₁₆ iv. 11010011_2 v. 1011111101011010_2	g numbers, into the indicate form into binary number. into decimal number. into octal number. into decimal number. into Hexadecimal number.	(10 Marks)
b)	Given the binary number below, con	vert it to Gray code format.	(2 Marks)
	11001110001 ₂ = X _{gray}		
c)	Describe the functionalities of the fo i. Memory cell. ii. De-multiplexers.	llowing Digital circuits.	(5Marks)
d)	iii. Registers.iv. Shift Registers.v. Counters.	evaluate the Boolean expression for Q	-
			(3 Marks)
	~ <u> </u>		

Question (4) - (20Marks)

ii.

a) Perform the following calculations.

(6 Marks)

- i. $10111011_2 + 10110111_2$ Express the results in Decimal.
 - 1010₂ x 1111₂ Express the results in Decimal.
- iii. $1111_2 8_{10}$ Using twos complements.

b) Convert the following numbers as specified. (4 Marks)

- i. 11101011_{binary} into Gray Code.
- ii. 10011101_{gray} into Binary.
- iii. 101011011101₂ Octal number.
- iv. 101010101₂ Two's complements.
- c) Using Karnaugh mapping or Boolean simplification, design a full adder circuit, and implement the circuit using suitable gates. (10Marks)

Question (5) - (20Marks)

- a) Draw the basic logic gates, used in Digital electronics. Hence show their truth tables as well as the Boolean expressions. (14 Marks)
- b) State the two universal logic gates and explain why they are considered universal. (2 Marks)
- d) Apply DE Morgan's theorem to the expression below and hence show the transformation. (2Marks)

 $\overline{A + B + C + D}$

e) List four Number systems used in digital electronics, showing the character ranges.

(2 Marks)