
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 8, August 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Web Application Development Issues and

e-business Software Development Life Cycle

Patrick N. Kiratu
1
, Felix N. Musau

2

1PhD Student, Kenyatta University, School of Business, City Campus, P.O. Box 43844-00100 Nairobi, Kenya

2School of Computer Science and Sciences, Riara University, Mbagathi Way, P.O. Box 49940-00100 Nairobi, Kenya

Abstract: E-transaction applications have become indispensable in today’s competitive business environment, and are widely used in

several areas such as commerce, education and manufacturing among others. They enhance ubiquitous access of goods and services in

a short time and fast. Developing high quality e-business applications is the main goal software engineers who make use of a variety of

clearly defined development models in solving clients’ demands. The choice of a software development model is dependent on its

anatomy, challenges it poses and response to emerging technological advancements. The present study reports on an appraisal of

software development approaches used in practice. The study investigates the issues faced in using the models, the various models

structure and their suitability in coping with emerging technological trends. The study shows a discrepancy in existing software

developing approaches appropriateness in adequately addressing the prevailing e-business environment specifications. A new software

development approach is proposed, in this context, which is applicable to many e-business projects.

Keywords: e-business, challenges, models, waterfall, Interactive

1. Introduction

The web has been recognized as a dominant medium of new

and increasingly changing information in modern times.

Today, more and more businesses continue to set up

websites to market and sell their goods or services.

Contemporary customer is more informed and more

demanding than ever before. The advent and extensive

adoption of web 2.0 platform dictates that the consumer be

more involved in virtually all the processes business, from

production to delivery and even maintenance of the product

or service. The client makes contributions on how a good or

service is to be provided, when it is to be supplied, the mode

of delivery and provides feedback on its quality. This poses

challenges not only to businesses but also to software

developers. The businesses face a risk of being rendered

irrelevant in case they ignore the consumer participation;

although, the extent to which the client is to be involved in

the business processes is not resolute. On the other hand,

software developers face a challenge of incorporating most

of the ever-changing consumer requirements in application

designs, while ensuring that they do not compromise on

security of information which is critical in e-business

transactions. This study examines the existing software

development life cycle models for e-business application

development and proposes an integrative waterfall model

that caters for consumers‟ requirements in all the phases in

concurrence with emerging technological trends such as

web 2.0 platform.

1.1 Web Application Development

A web application is an end-user program, stored on a

remote server and accessed over the Internet by a browser

[12]. Since 1994 when Internet became available to the

public, it has continued to host many, increasingly

sophisticated and innovative websites. The quality of a

commercial websites can be viewed from two perspectives:

static and dynamic. The static quality of a website is the

analysis of the in terms of design of the elements in relation

to the purpose, content and structure of the site while

dynamic aspect is related to customer interactivity and

feedback [25]. According to [25], the latter approach

achieves a measure of social acceptability by ensuring that

content and products presented are in harmony with the

living habits, culture and social system of the target

population. Growing access of the Internet through mobile

devices with different specifications and capabilities have

brought on board an increased number of users: skilled and

unskilled, with varied interests and goals thereby broadening

the dynamic requirement for websites.

An ubiquitous web modeling approach responsive to mobile

devices was proposed by [42] who concurred that the

existing web modeling languages lacked proper engineering

design foundations which hampered their scope and

capabilities in a dynamic environment. The advent of Web

2.0 social network platform bridged the interactivity gap

identified in the preceding approaches. In this paradigm

peers contribute to the development tools, content and

among communities on the Internet [43]. The approach

embraces the use of highly interactive social media

platforms to harness knowledge that boosts user experience,

bringing forth a unique and distinct source of information

that is disruptive to the legacy markets. Web 2.0 service

models, such as social networking sites, video-sharing sites,

wikis, blogs and web-based communities, allow for

information to flow in both directions and are not

constrained by time or location. These participative

technologies emphasize on exchanging consumer-generated

content, easy to use applications and interoperability

between different end-users computing devices [4]. To tap

into the business opportunities inherent in these platforms,

businesses continue to engage stakeholders in the design,

deployment and access to their websites. This is a trade-off

of business opportunity versus challenges posed by these

technological advances.

Paper ID: ART2019554 DOI: 10.21275/ART2019554 593

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 8, August 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. e-Business Application Development Issues

Nowadays firms leverage on web technology to maintain

competitive advantage by deploying more innovative and

dynamic applications. This is accelerated by the customers

demand to know the different aspects of products or services

on offer such as cost, look, feel and ultimate value for

money. Clients often achieve this by visiting businesses

websites or social media platforms using computers or

mobile computing devices. In developing a successful e-

business presence, factors such as website responsiveness

and user-friendliness are critical [39]. However, several

issues hinder this achievement and can be categorized into

two broad groups. There are those e-business software

issues that the client demands like ease of use and inter-

operability with different computing devices and the

challenges firms faces in satisfying the customers‟ needs,

like security of data [26]. The two categories are

interdependent and are addressed almost simultaneously.

The former are more challenging due their diverse nature

and volatility and have an impact on the latter.

2.1 Technological Issues

Nowadays, many businesses are inclining towards e-

transactions to enhance competitiveness in their industries.

On the contrary, [26] observed that introducing new e-

business applications to businesses that were not

accustomed to using such technology results in challenges

and the firm struggled to operate under the new standards.

The issues were aggravated by migrating from static to

dynamic websites causing many firms to struggle

optimizing the opportunities provided by the newer

technology leading to plummeting of profits. Firms also,

face challenges on how to select the appropriate method of

web application development based on critical factors of

quality, time and cost. The market offers a wide variety of e-

business application developers and tools whose choice and

success depends on a number of factors, some known to the

firm and others unplanned for. In addition, today‟s business

applications need to be more flexible, scalable and

interoperable to cope with a diverse and rapidly changing

technological and e-commerce environment.

2.2 Strategic Issue

Dynamic web applications and web 2.0 platforms are

interactive in nature and have opened up businesses to

customers [26]. This has caused slacker firms indecision on

how much operational transparency to provide to users

during e-transactions and how much business control to

relinquish. [26] adds that these businesses face challenges of

determining the extent of investment necessary to comply

with new standards and how to formulate business models

that can be understood by consumers. Other strategic issues

identified, that obscure the already existing threats borne by

firms in an industry, include: extent of information sharing

dilemma, abandoning proprietary legacy applications,

changing the business cultures and the extent of product

ownership to surrender.

2.3 Responsiveness of Applications

According to [26], earlier e-business applications were

static, rigid, and unresponsive forcing users to resist them

due to poor design. This was followed by websites that

focused on users, but often restricted themselves to a fixed

set of perspectives. Again, users resisted them due to lack of

skills and usability errors. Owing to the dynamic, complex

and unpredictable nature of users, e-business applications

designs have accommodative interfaces and workflows that

match pre-defined usage contexts – like ability to continue

designing while still in use [39]. Hence, [26] affirms that

designing of such responsive e-business applications is

tedious, expensive and difficult for many businesses in an

industry.

2.4 Proficiency Issues

Designing web applications to support several end-user

devices while simultaneously, offering personalized services

require adequately software engineers. There are several and

varied e-business application developing tools in the market

leading to a multitude of solutions that can be deployed and

maintained. Consequently, web hosting companies get

strained by the increased demands and often lack staff with

requisite skills to handle the mutating designs [8]. At the

business level, specialists are required to address e-

transaction issues that may arise from time-to-time.

Businesses that are unable to resolve end-user issues

originating from e-commerce are likely to incur losses when

transactions are abandoned or dissatisfied customer fade

away. In addition, website down-times are not pleasant for

businesses in a competitive environment leading higher

demand for e-business application specialists.

2.5 Complexity Issue

In designing e-transaction applications, content is created

dynamically based on prevailing status of businesses, such

as stock levels and prices, hosted in database systems. Web

servers are deployed and integrated to link the business

systems at the backend to the Internet. These arrangements

coupled with the need for continuous update of user

interfaces have a bearing on transactions response time

which is significant in virtual environments [24]. The

conglomeration of devices bearing diverse applications

increases intricacies to the already existing network

components making it difficult to troubleshoot and fix in

case of downtime.

2.6 Security

Embracing Web 2.0 platform by many firms and users have

bred a new generation of Internet users in the workplace

bringing with them the comfort of social media. [40]

observes that the net-generation has embraced technology in

both private and professional live and has a different

perspective of organization work culture, access to

information and multi-tasking. This has brought a conflict

between members of the generation and the rigid policies

prevalent in many businesses [40]. Social platforms have

developed fast forcing businesses to shift their focus to

providing users access to data and resources without

considering the risks involved. Research has identified

security threats posed by allowing users access to firms‟

Paper ID: ART2019554 DOI: 10.21275/ART2019554 594

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 8, August 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

networks as electronic intrusion by hackers or malicious

software attacks. The business may also experience data

leakage, loss of confidentiality and privacy which often

result in brand damage, tarnishing of organization‟s

reputation or loss of intellectual property rights [39].

2.7 Legal and Ethical Issues

[39] claims that allowing customers to a businesses network,

as is the case in web 2.0 platform, exposes it to both legal

and financial penalties from regulatory authorities arising

from compliance breaches, copyright infringement or

plagiarism since shared information may be factually wrong,

untrustworthy and difficult to authenticate the sources.

Additionally, combining information from various sources

could diminish its relevance leading to suboptimal use of

organizational resources and time. The businesses are also,

likely to suffer losses arising from abandoned operations or

inadequately maintained or tested applications occasioned

by legal caveats.

The issues identified in e-business application development

processes point to the significance of choosing and adopting

models that mitigates them while maintaining user-

acceptability and developers‟ satisfaction. This study

investigates the structure and suitability of various software

development approaches in the context of changing

consumer requirements. The study categorizes the

approaches into conventional/traditional approaches,

contemporary models, emerging approaches and a proposed

interactive waterfall model.

3. Software Development Life Cycle

A cycle is a series of occurrences repeated routinely within a

given duration where events repeat themselves [35].

Therefore, a life cycle is a succession of events or blueprints

that reveal themselves in the existence of an entity [30].

Software development life cycle is central to successful

completion of an e-business application. The determination

of whether the life cycle is formally implemented or

superficial lies with the clients and the application

developers.

3.1 Classical Software Development Approaches

These were the initial software development models and

have been in existence for some time. They have been used

repeatedly in small and large projects of varying

complexity. This study investigates the anatomy and

appropriateness of four contemporary software development

life cycle approaches in addressing e-business application

development life cycle challenges. They include: the code

and fix model; the waterfall model; evolutionary model and

the spiral model.

3.1.1 Code and fix Model

Between 1950s and 1960s, software development was a

single person task dictated by the fact that: it was a science,

the developer was also the user, requirements were known

and the development of the application involved coding and

fixing bugs that existed [30]. However, this model proved

inadequate as computers became popular and developers

distinct from users. This motivated software engineers‟

aspiration to incorporate user requirements when designing

applications thereby making them more complex,

necessitating collaborative approaches. Consequently,

software products began to fail because identifying flaws

and correcting them was difficult. Important issues of

quality assurance testing; changing user requirements and

documentation paved way for newer software and more

systematic way of developing the applications [30]. Code

and fix approach is suitable for small projects where the user

is the same one using it and efforts directly contribute the

product. However, the resulting model rarely matches the

user needs and is prone to errors that are costly to fix and

several reworks leads to code deterioration [44]

3.1.2 The Waterfall Model

The waterfall model derives its name from its geometric

shape similarity with a typical waterfall. There are several

varieties of the model phases emanating from different

amount of details given by varied scholars and the manner

of categorization [9]. The model consists of several non-

overlapping phases: requirements analysis and specification,

detailed design, coding, testing and implementation/

maintenance [37]. In waterfall model, the project is sub-

divided into sequential stages with some overlie and allow

loop back between the phases. It stresses on planning, time

schedules with target dates, budgets and implementation of

the whole system at once. Finally, control of software

project is enhanced through extensive documentation,

official reviews and endorsement by the end-user and

developers upon completion of a phase.

According to [3], the model is used to implement major

software projects in government agencies and large

companies. It is easy to use, even with inexperienced teams

and reduces planning costs. However, [30] notes that it has

some shortcomings in form of budget overruns, late or

suspended deliveries and overall dissatisfied clients. In

addition, its emphasis on perfect analysis and design often

result in too many meetings and too much documentation,

substantially delaying the process of integration and testing.

This leads to late delivery of projects characterized by poor

quality, costly rework or unfeasible applications. [5],

observes that during the requirements elicitation phase the

risk of omitting crucial elements is high and unpredictable.

Although the risks get stabilized through the phases, their

late resolution results in late design changes and code with

low fixes. [30] concedes that the approach characteristic

requiring specification of all user requirements

comprehensively and unambiguously at the beginning

assumes that all of them are significant and remain change

throughout the process which is unrealistic.

Although waterfall model provides the much-needed

guidelines for a disciplined approach to software

development, [3] observes that it is rigid since the results of

one phase are to be frozen before the next phase could

begin. It is monolithic since all planning is geared towards a

single delivery date and heavy document-driven to the point

of being bureaucratic. In addition, real application

developments rarely followed the chronological flow

depicted by the model and a slight alteration causes

confusion as the project progresses [30].

Paper ID: ART2019554 DOI: 10.21275/ART2019554 595

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 8, August 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.1.3 The Evolutionary Model
The evolutionary model is grounded on continuous

advancement of application development process in

response to changing user requirements. It is a refinement of

the waterfall model aspect where the consumer does not get

to know anything about the software until the end of the

project [13]. The model involves customers by developing

and presenting working models of the software for their

feedback. [30] categorizes evolutionary approach into two:

incremental and prototyping approaches. In incremental

approach, software product is developed in stages with some

sections of the application postponed and additions

occurring only to enhance its functional capabilities.

Gradually, other functions are incorporated as

enhancements, a move viewed as a replica of the waterfall

process model where coding, integration and testing are

done in an incremental style [13]. On the other hand,

prototyping software development process is based on an

investigational procedure typified by developing a working

model of the application and giving it to end-users for

comments and feedback. It takes two forms: throwaway

prototyping – where initial version of the software is

developed only temporarily to elicit user requirement

information then discarded; or evolutionary prototyping

where the initial design is progressively transformed into a

workable application [44].

The model is suitable for both small and medium projects. It

is beneficial in that feedback generated from earlier

increments is used to enhance later stages by enabling users

to understand their needs early and also takes a shorter time

to development an application. However, the software

deteriorates due to late increments that may require

adjustments to earlier stages. In addition, it requires skilled

personnel and expert management [44]. Again, not all

projects are divisible into functional units and programmers

are more productive working on large systems as opposed to

small modules fronted by the model [1].

3.1.4 The Spiral Model
Spiral model explains the importance of iterative

development by incorporating the characteristics of the

waterfall model and the prototyping approaches [3]. It

depicts application development process in form of a spiral

that curls in a clockwise manner where iteration represents a

phase of the waterfall model. Each phase commences with a

design goal and terminates with the consumer undertaking

an appraisal of the progress made. The model combines

analysis and design as the applications get completed [37].

There is a deliverable for each cycle of the spiral in the

model, although, it presupposes no fixed phases and grants

this prerogative to the client - leading to numerous

variations in the number of iterations, from business-to-

business, assignment-to-assignment and customer-to-

customer. Each quadrant of the spiral corresponds to a

particular set of activities for all phases. They include:

determining objectives, evaluating alternatives, developing

the next level product and finally, planning next phases. The

radius of the spiral signifies the cumulative cost of

development while the angular dimension represents the

progress [30].

According to [3] the model is advantageous in delivering

projects early in the life cycle and takes strengths of other

models. Additionally, its risk-driven approach avoids

potential reviews and rework leading to higher customer

approval rates. Moreover, the approach is more flexible

since additional features can be added to the system in

future. However, the approach may be expensive, escalates

project duration, requires expert management in risk

analysis and also, generates lengthy documentation - hence

undesirable for small projects [30].

3.1.5 Other Classical Models

The number of traditional software development models

was compounded by [10], who proposed two additional

approaches. The reusable software – where past workable

designs and code are recycled in new projects; and the

automated software synthesis – where user specifications or

designs are automatically converted into workable projects

using high-level programming languages with code

generators or CASE tools. However, these approaches may

be viewed as subsets of the mainstream models in the

classical or contemporary categories. For instance, software

reuse is considered as a form of component based software

engineering, while the automated software synthesis as a

subset of extreme programming or prototyping.

It is evident that most conventional software

development life cycle models diminished flexibility,

enforced misuse of resources, took long to deliver

systems and lacked proper documentation among other

shortcomings. The models never addressed the twin

issues of cost and quality together and often promised

one at the expense of the other. This lead to emergence

of modern methods of e-business application

development approaches.

3.2 Contemporary Software Development

Approaches

Research has shown that the classical software development

approaches faced a number of challenges ranging from

exceeding budget, long delivery period and complexity.

Many projects failed to achieve the set targets and others

had to be reworked leading to consumer dissatisfaction.

Several alternative approaches, which were iterative and

incremental in nature, emerged to fill the gaps identified.

They aimed at addressing the shifting user requirements and

advancement in technology. This study investigates the

structure and suitability of the component based software

development model, rational unified process, win-win spiral

model, rapid application development (RAD), cleanroom

engineering, concurrent engineering and agile development

process.

3.2.1 Component-based Software Development

It is based on object-oriented programming that uses classes

that encapsulate both data and methods [18]. The classes are

templates for designing objects and can be re-used in

developing a variety of other applications. According to

[41], this presents an opportunity of assembling error-free

software products from the pre-tested individual

components. In addition, using these components in

developing applications saves cost, time and enhances

Paper ID: ART2019554 DOI: 10.21275/ART2019554 596

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 8, August 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

productivity, reliability and maintainability. Recent

developments in technology and coding tools have increased

the capability of designing applications from reusable

components. The practice is further enhanced by availability

of certain ready to use, off-the-shelf software elements. The

goal of component-based software engineering is to provide

support in assembling the parts that are meant for reusability

in future and to increase maintenance and upgradability of

systems by providing customization and replacement of

components [30].

The model faces challenges when assembling different

components written in different programming languages

requiring interoperability conversion. Again, there exists no

universally acceptable framework for component-based

software development. System developers using this model

also face a challenge in selecting the necessary components

from a multitude of them. The problem arises not only due

to the large size of the repository but also from unfamiliar or

unexpected terminologies employed. To facilitate the

search, it is desirable to organize the components in the

warehouse by expressing component relationships. Such

relations allow components to be classified and understood.

Finally, the model requires skills to create software

architecture, test, integrate, evaluate and document products

emanating from off-the-shelf software elements [18].

3.2.2 Rational Unified Process

The Rational Unified Process is a process-independent life

cycle model applicable to several software engineering

processes [2]. The process is iterative and incremental in

nature and employs the use-case tools of the unified

modeling language (UML) to specify and design a system.

UML is a visual modeling language that provides a method

of stipulating, constructing and documenting a project [32].

The model involves refinements of a basic model through

multiple cycles while accommodating new requirements and

resolving risks. It emphasizes on a robust software model

not prone to failure and revision. The process is object-

oriented in nature and gathers information by understanding

how the delivered software is to be used and can be tailored

to the needs of both small and large projects. [30] described

a rational unified process with four development phases

grouped under two broad categories. The engineering

category made up user requirements gathering or analysis

and design stages; and the production category comprising

of coding/testing and deployment tasks. [32] observed that

the model has a limitation in that risks are greater towards

completion of a software product and it may be costly to

reverse mistakes of the preceeding phases.

3.2.3 Win-Win Spiral Model

The win-win spiral model uses theory W (win-win) to

develop a system that is negotiated from all the stakeholders

for it to be a successful [35]. The approach builds on the

normal spiral development life cycle where customers and

application developers enter into a process of negotiation

[36]. The consumer proposes system features, performance

and other characteristics against cost and delivery time. The

resulting negotiated “win-win” solution addresses most of

the customer‟s needs and software engineers win by

working under realistic budget and timelines. There are

three multi-stakeholders feedback and collaboration

activities: identification of the systems key consumers,

determination of the stakeholders‟ ideal system vision (win-

condition) and negotiation of the consumers‟ perfect system

view to bring together a set of win-win condition for all the

concerned groups [6]. The model implements a software

product in a series of iterative phase as shown in figure 1

adapted from [7].

Figure 1: The Win-Win Spiral Process model

According to [35], the win-win spiral model has a higher

consumer approval rate and requires less remedial work

since it embraces all stakeholders‟ views. Additionally, the

model has a higher rate of risk avoidance and greater

documentation control. Lastly, the approach realizes

applications early in the life cycle while giving room for

inclusion of emerging functionalities later to the system.

Conversely, the model can be expensive, requires expertise

and its success is based, to a large extent, on the risk

identification and mitigation aspects. There is also, the

challenge of growing user-requirements due to stakeholders‟

involvement in the development process [6].

3.2.4 Rapid Application Development (RAD) Model

The model combines the benefits of iterative and

incremental approaches in the process of application

development. According to [29], the approach is useful in

situations where user requirements are not known upfront so

that a working model of the system is developed to assist the

client have a physical feel of what they want. Object-

oriented approach, reusable software components and

modern programming tools have helped system developers

to produce prototypes more speedily than using

conventional models. Rapid application development

describes this method of creating feasible accomplishments

in a very short period of time [22]. It is characterized by

user involvement in all the phases of the life cycle and close

collaboration with project specialists. [30], proposed a RAD

model with four phases: generation of user requirements

accelerated by joint application design (JAD), user

description of the application captured with the help of

automated tools, construction of the prototype and

implementation combined with testing and user training.

The model has several advantages such as: developing

applications more quickly, considerable cost saving,

encouraging stakeholders‟ feedback, increasing reusability

of components and addressing software integration issues

[34]. However, it poses challenges in its dependence on

strong teams and individual performance to identify client

requirements and has a narrow application to only projects

that can be split into modules. It also, requires software

Paper ID: ART2019554 DOI: 10.21275/ART2019554 597

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 8, August 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

engineers with modeling skills and whose cost is high.

Moreover, the users may continue requesting for

enhancements of prototypes in search of perfect applications

leading to project scope creep and delay. Finally, customers

may be deceived by a prototype to imagine that the

developer has completed the application leading to

premature termination of services and hence, sub-standard

applications [16].

3.2.5 Cleanroom Software Engineering

The model is based on perfecting the application

development process to arrive at a final product that does

not require reworking or costly defect removal process. The

“cleanroom” environment is achieved by developing the

software product in an incremental manner. The design,

development and verification of each increment are

undertaken in a rigorous manner based on specified,

structured procedures and principles of certification and

standardization [33]. The cleanroom approach anchors on

five key pillars: formal specification of requirements;

incremental development; structured programming; static

verification of individual builds; and statistical testing of the

application with the help of reliability growth models.

The model uses a method known as box structure

specification where a „box‟ contains aspects of a system.

Information contained in each box is reliable to describe its

fine-tuning, independent of other boxes implemented.

According to [30], the model prescribes three boxes: black

box, state box and clear box. The black box presumes the

behavior of a system and it reacts to specific occurrences by

applying a set of transition rules while state box

encapsulates data and methods just like other objects

maintained in all transitions. Finally, the clear box defines

the transition function and includes the procedural design

for the box. Cleanroom modeling process is advantageous in

that error-free, high quality applications are developed, in

shorter time and at lower costs. However, the model is

deemed to be too theoretical and mathematical hence

complicated and it lacks unit testing leading to low approval

levels among the stakeholders [45]. Figure 2 below

represents a model of the cleanroom process adapted from

the description given by [44].

Figure 2: The cleanroom Process

3.2.6 Concurrent Development Model

„The approach, also known as concurrent engineering, is a

series of software engineering tasks and their associated

states [46]. In large software development projects, several

engineering teams are involved and numerous activities are

undertaken, simultaneously, which are at different

completion stages. In addition, various activities can be in

one of the several states namely: not started, commenced,

being reviewed or completed [30]. This makes it difficult to

keep track of the status of each activity compounded by the

fact that events emanating within an activity or elsewhere

can cause its transition from one state to another.

According to [46], the model can be applied to all types of

application development projects since it is easy to

understand and gives instant feedback after testing while

providing an instant view of the project status. Conversely,

there is the challenge of proper communication among the

team members and requires constant recollection of the

status of different activities. Figure 3 below illustrates a

graphic representation of one application development

motion within the modeling activity for the concurrent

process model adapted from [20].

Figure 3: Activity Transition Diagram of the Concurrent

Engineering Model

3.2.7 Agile Development Process

Agile development model commences by a brief recording

of an application requirements in clients own words, known

as user stories. Test cases are generated from the resulting

software project specifications from which programmers

design user interfaces. The design may then, be reworked to

match the tests and user interfaces [30]. Extreme

programming (XP) and scrum are the two forms of the agile

development process [14]. [19], describes extreme

programming as an application development process based

on simplicity, communication, feedback and courage. The

development team is brought together in an environment of

simple practices and prenty of user feedback necessary for

identifying the present status and hence allowing developers

to focus their effort based on the prevailing unique status.

On the other hand, scrum is a software development process

that supports collaboration and responsibility in iterative

advancement manner, towards a precise goal. It is grounded

on starting with what is known and then, following the

progress while eliminating the unnecessary elements based

on three key pilllars: transparency, inspection and adaptation

[31]. Agile development process is useful in situations

where user requirements keep on mutating. Figure 4

represents an agile development model tailored from the

descriptions given by Shelly and Rosenblatt (2009).

Paper ID: ART2019554 DOI: 10.21275/ART2019554 598

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 8, August 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Agile Development Process

[15], asserts that agile development process is fast, flexible

and efficient especially when implementing projects

characterized by fluctuating user requirements. In addition,

it fosters community values, allows constant validation of

the project thereby reducing project risks and modifications.

However, [17] points out several shortcomings of the model

such as: lack of technical and interpersonal skills in the

group, lack of laid down structures coupled with missing

documentation - that can introduce an element of risk and

project scope creep as user requirements continue to grow

during the project. Again, there are chances that developers

may fail to grasp the full picture of the system emanating

from lack of quality communication with the clients.

Finally, reworking the prototype is discouraging to

developers and may lead to negligence of quality.

4. Emerging e-Business Application

Development Models

Research has shown a growing trend of enhanced or

integrated software development models with an aim of

dealing with or minimizing shortcomings of the parent

models or to cope with shifting user requirements and

emerging trends in technology. [21], found that hybrid

approaches were being used widely in software projects

where the traditional models formed the backbone on which

refinements hinged and then integrated to other models to

generating newer software development approaches.

However, their study lacked adequate population size and

relied only on participants working in a company where one

hybrid model was in use. Again, they employed

convenience sampling technique for the study which is

prone to bias leading to unreliable study findings.

[49] proposed a hybrid agile softwre development model

christened Water-Srum-Fall. This was an acronym where

water - represented upfront tasks of requirement generation,

timelines and budget; scrum – stood for provision of simple

set of values, working practices, and duties for teams to

execute; and fall – stood for establishing bylaws to limit

software release rates. However, software developers rarely

follow the process depicted by the model. In addition, the

approach poses a challenge of taking a lot of time upfront,

dealing with interpersonal dynamics in agile teams and loss

of clientele due infrequent releases [37].

Open source agile software development approach was

coined by [28] by combining the aspects of open source

software and the agile model. However, agile model has

problems origianating from group dynamics, lack of

documentation and standardization. Therefore, when

integrated with an open source software that tend to evolve

in line with developer‟s wishes, complicates the process

further. Additionaly, open source software is not user

friendly and lacks adquate testing and vendor support

making the model incapable of handling emerging clients

needs.

An enhanced system developmnt life cycle model was

hypothesised by [27], who argued that computers could be

used as persuasive tools capable of changing peoples‟

behavior voluntarily. In addition, the authors emphasized

that inclusion of persuasion and sustainable development

aspects in the conventional system development life cycle

approaches would improve the models and make them more

responsive. However, the study did not address the short-

comings of the models like rigidity, duration of delivery and

tedious documentation processes that make them unpopular

among software engineers.

Many present-day software development methodologies are

being used for large and complex projects. They may be

used either, singly or as hybrid formats - where they are

combined with other models. The models integration is

aimed at addressing complex design issues encountered in a

software development environment. However, disruptive

technological advancements, like web 2.0 and web 3.0

platforms that are participative, collaborative and integrative

in nature require more than just a hybrid of the existing

models. A more focused software development method

should be put in place that addresses both persistent and

emerging design issues.

5. e-Business Application Development

Direction

Business applications are being used by consumers with

diverse expertise and abilities. Part of this development can

be traced to software engineers desire to assist users in their

routine activities that impact on businesses. With the advent

of web 2.0 social platforms, consumers are becoming more

involved in business processes such as product or service

design, improvement and even distribution [23]. In addition,

businesses have to cope with an equally different work force

whose life is inter-twined by social media platforms. For

this category of employees, there is little distinction between

work-life and social-life. To enhance the productivity of

these workers, firms have moved to incorporate their way of

life into business operations [9].

Software engineers are faced with challenge of designing

applications that cover almost all business needs while

maintaining usability and understandability. They have to

get input from business owners, workers and other

stakeholders as well. A lot of these inputs are in non-

technical forms and require extensive transformation into

user requirements that can be implemented into an e-

business application with fewer errors.

Interaction between e-business application and multiplicity

of users, comprising of employees, producers, customers,

financial institutions and others interested stakeholders, is an

on-going process throughout the life of the business [9].

Paper ID: ART2019554 DOI: 10.21275/ART2019554 599

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 8, August 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Such applications require a more adaptive system design

methodology like the waterfall approach, modified to suit

emerging technological trends. . Having the user actively

involved in the process of e-business application

development is a path which can improve their quality of

life and give responsive side of the designer. In the end,

consumers will be more contented with the resulting

application with enhanced utility, rational navigation

procedures and easy to use.

6. Interactive Waterfall Model

Research has demonstrated the application of the classical

waterfall model in developing large and complex

applications for both small and large firms. In a survey of

two hundred and two specialists in Turkey, [11] found that

requirements elicitation stage is the most challenging phase

of the system development life cycle. [47], concurs that

although agile methodologies seemed more common in the

last ten years, traditional approaches, including the waterfall

model, are still popular. The present study closes this gap

by adopting inclusion of improved requirement elicitation

task throughout the system development life cycle as

proposed by [26]. In addition, this study incorporates testing

in every phase of the system development life cycle as a tool

for validating and verifying users input made in all the

phases of the model from initiation to post-deployment

stages. The study adopts waterfall model described by [48],

and improves it to accomodate the web 2.0 community in

software development life cycle as shown in figure 5 next.

Figure 5: Interactive Waterfall Model

The model is beneficial to the e-business owners because

they will be more assured that the applications developed

will work as expected since user requirements have been

incorporated in every phase. In addition, users will get an

application with a high probability of matching their diverse

work/leisure environments. Furthermore, application

developers will spend little time in each phase on standards,

rules and agreements already agreed upon by stakeholders

making delivery of the system much faster and less costly.

Finally, testing user responses at every phase for validation

and verification purposes will reduce system rework and

protect the business from legal liabilities that may emerge

from wrong or invalid contributions. The model presents a

win-win position where businesses invest in better e-

business application systems and users collaborate with

developers to achieve the ideal software product.

7. Conclusion

Nowadays there are numerous scientific software

development models. The proposed model has been

developed bearing in mind the problems faced while using

the classical, contemporary and hybrid approaches in e-

business application development. The proposed model is

two-fold that ensures clients satisfaction by incorporating

user feedback on one hand and improving the quality of the

accomplished software product. Software developers

employing the model will be more satisfied because reworks

will be minimized and the delivery time shortened. Again,

the stakeholders‟ acceptance of the final e-business

application is higher and a motivating factor to the

developers.

References

[1] Agarwal, B. B., Tayal, S. P., & Gupta, M. (2010).

Software Engineering and Testing. Sudbury,

Massachusettes: Jones and Bartlett Publishers.

[2] Akhunzada, A., Gani, A., Hussain, S., Khan, A. A., &

Ashrafulla. (2015). Towards experiencing the pair

programming as a practice of the Rational Unified

Process (RUP). SAI Intelligent Systems Conference

(IntelliSys) (pp. 537-542). London: IEEE.

[3] Alshamrani, A., & Bahattab, A. (2015). A Comparison

Between Three SDLC Models Waterfall Model, Spiral

Model, and Incremental/Iterative Model. International

Journal of Computer Science Issues, Volume 12, Issue:

1, No. 1 , 106-111.

[4] Barassi, V., & Trere, E. (2012). Does Web 3.0 come

after Web 2.0? Deconstructing theoretical assumptions

through practice. New Media and Society: Vol. 18, Issue

8 , 1269-1285.

[5] Bassil, Y. (2012). A Simulation Model for the Waterfall

Software Development Life Cycle. International

Journal of Engineering & Technology (iJET), ISSN:

2049-3444, Vol. 2, No. 5.

[6] Boehm, B., Bose, P., Horowitz, E., & Lee, M. J. (1994).

Software Requirements Negotiation and Renegotiation

Aids: A Theory-W Based Spiral Approach. Software

Requirements Negotiation and Renegotiation Aids , 1-

18.

[7] Boehm, W. B. (1998). A Spiral Model of Software

Development and Enhancement. IEEE , 61-72.

[8] Bonifati, A., Ceri, S., Fraternali, P., & Maurino, A.

(2000). Conceptual Modeling for E-Business and the

Paper ID: ART2019554 DOI: 10.21275/ART2019554 600

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 8, August 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Web. Building Multi-device, Content-Centric

Applications Using WebML and the W3I3 Tool Suite

(pp. ER 2000 Workshops on Conceptual Modeling

Approaches for E-Business and The WorldWide Web

and Conceptual Modeling). Salt Lake City, Utah, USA,:

Springer.

[9] Braude, J. E., & Bernstein, E. M. (2016). Software

Engineering: Modern Approaches, 2nd Edition. Long

Crove: Waveland Press, Inc.

[10] Davis, M. A., Bersoff, H. E., & Comer, E. R. (1988). A

strategy for Comparing Alternative Software

Development Life Cycle Models. IEEE Transactions on

Software Engineering: Volume: 14, Issue: 10, 1453 -

1461.

[11] Garousi, V., Coskuncay, A., Betin-Can, A., &

Demirors, O. (2015). A Survey of Software Practices in

Turkey. Journal of Systems and Software, Volume 108,

148-177.

[12] Gellersen, H. W., & Gaedke, M. (1999). Object

Oriented Web Application Development. IEEE Internet

Computing, volume 3, Issue 1, 60-68.

[13] Giardino, C., Paternoster, N., & Unterkalmsteiner, M.

(2016). Software Development in Startup Companies:

The Greenfield Startup Model. IEEE Transactions on

Software Engineering, Volume: 42, Issue: 6, 585 - 604.

[14] Gregory, P., Barroca, L., Taylor, K., & Salah, D. S.

(2015). Agile Processes in Software Engineering and

Extreme Programming: 16th International Conference,

XP 2015. Agile Challenges in Practice: a Thematic

Analysis (pp. 64-81). Helsinki, Finland: Springer

International Publishing.

[15] Heikkila, V. T., Lassenius, C., Damian, D., &

Paasivaara, M. (2015). A Mapping Study on

Requirements Engineering in Agile Software

Development. 2015 41st Euromicro Conference on

Software Engineering and Advanced Applications (pp.

199-207). Funchal: IEEE.

[16] Hentzen, W. (2002). The Software Developer's Guide.

Whitefish Bay : Hentzenwerke Publishing.

[17] Käpyaho, M., & Kauppinen, M. (2015). Agile

Requirements Engineering with Prototyping: A Case

Study. 2015 IEEE 23rd International Requirements

Engineering Conference (RE) (pp. 334-343). Ottawa:

IEEE.

[18] Khan, S., Arif, F., Babar, M., Khan, F., & Tahir, M.

(2016). Framework for Better Reusability in

Component Based Software Engineering. Journal of

Applied Environmental and Biological Sciences,

Volume 6, 77-81.

[19] Kniberg, H. (2015). Srum and XP from the Trenches:

How We Do Scrum. New York: C4Media.

[20] Kossiako, A., Sweet, N. W., Seymour, J. S., & Biemer,

M. S. (2011). Systems Engineering Principles and

Practice. New Jersey: John Wiley & Sons.

[21] Kuhrmann, M., Diebold, P., & Münch, J. (2017).

Hybrid So ware and System Development in

Practice:Waterfall, Scrum, and Beyond. ICSSP 17 , 1-

10.

[22] Laudon, C. K., & Laudon, P. J. (2017). Essentials of

Management Information Systems. Mexico: Pearson.

[23] Lee, I. (2016). Encyclopedia of E-Commerce

Development, Implementation and Management.

Hershey PA: Business Science Reference.

[24] Li, W.-S., Candan, K. S., & Huang, W.-K. (2004).

Acceleration and Monitoring of Data Center-hosted

Distributed Database-driven Web Applications.

Concurrent Engeneering: Research and Applications

Volume 12 205Number 3 , 205-219.

[25] Lu, M.-t., & Yeung, W.-l. (1998). A framework for

Effective Commercial Web Application Development.

Internet Research: Electronic Networking Applications

and Policy. Volume 8 • Number 2 , 166–173.

[26] Marea, D., Bulander, R., Kruslin, C., Shishkov, B., &

Sinderen, V. M. (2012). e-Business Challenges and

Directions: Important Themes from the First ICE-B

Workshop. ICETE (pp. 3-35). Berlin: Springer.

[27] Mastaquim, M. M., & Nystrom, T. (2015). A System

Development Life Cycle for Persuasive Design for

Sustainability. Persuasive Technology: 10th

Internationl Conference, PERSUASIVE 2015 (pp. 217-

230). Chicago: Springer International Publishing.

[28] Misra, C. S., & Singh, V. (2015). Conceptualizing Open

Agile Software Development Life Cycle (OASDLC)

Model. International Journal of Quality and Reliability

Management, Vol 32: Issue 3 , 214-235.

[29] Misra, S., Omorodion, M., Mishra, A., & Fernandez, L.

(2017). A Proposed Pragmatic Software Development

Process Model. In I. Global, Intelligent Systems:

Concepts, Methodologies, Tools and Applications (pp.

448-462). Hershey: IGI Global.

[30] Mohapatra, K. J. (2010). Software Engineering (A

Lifecycle Approach). New Delhi: New Age Internationa

(P) Ltd., Publishers.

[31] Morris, D. (2017). Scrum in Easy Steps: An Ideal

Framework for Agile Projects. WarwickShire: In Easy

Steps Ltd.

[32] O'Regan, G. (2017). Concise Guide to Formal

Methods: Theory, Fundamentals and Industry

Applications. Gewerbestrasse: Springer International

Publisher.

[33] O'Regan, G. (2017). Concise Guide to Software

Engineering: From Fundamentals to Application

Methods. Gewerbestrasse: Springer International

Publishing .

[34] Patel, M. (2017). Professional Knowledge for IBPS/SBI

Specialist IT officer Exam. New Delhi: Disha

publishers.

[35] Rajiv, C. (2016). Web Engineering. New Delhi: Asoke

K. Ghosh, PHI Private Learning Ltd.

[36] Rajput, S., & Sharma, R. (2015). Software Engineering.

Gwalior: Horizon Books.

[37] Rastogi, V. (2015). Software Development Life Cycle

Models - Comparison, Consequences. International

Journal of Computer Science and Information

Technologies, Vol. 6, Issue 1 , 168-172.

[38] Rudman, J. R. (2010). Incremental risks in Web 2.0

applications. The Electronic Library, Vol. 28 Issue: 2 ,

210-230.

[39] Rudman, R. J. (2009). Incremental risks in Web 2.0

applications. Journal of Knowledge Management Vol.

13 Issue 1 , 120-134.

[40] Rudman, R., & Steenkamp, L. (2009). Potential

influence of Web 2.0 usage and security practices of

online users on information management. South Africa

Journal of Information Management, Volume 11 Issue

2, 1-13.

Paper ID: ART2019554 DOI: 10.21275/ART2019554 601

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2017): 7.296

Volume 7 Issue 8, August 2018

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[41] Sarcar, V. (2016). Interactive Object Oriented

Programming in Java: Learn and Test Your Skills.

Bangalore, Kanataka: Apress.

[42] Schwinger, W., Retschitzegger, W., & Schauerhuber,

A. (2008). A survey on web modeling approaches for

ubiquitous web applications. International Journal of

Web Information Systems, Vol. 4 Issue : 3 , 234-305.

[43] Shang, S. S., Li, E. Y., Wu, Y.-L., & Hou, O. C. (2011).

Understanding Web 2.0 service models: A knowledge-

creating perspective. Information & Management,

volume 48 , 178-184.

[44] Sommerville, I. (2015). Software Engineering 8th

Edition. Edinburg Gate: Addison Wesley Longman

Limited.

[45] Stephens, R. (2015). Beginning Software Engineering.

Indianapolis: John Wiley & Sons, Inc.

[46] Stjepandić, J., Verhagen, J. C., & Wognum, N. (2015).

Concurrent Engineering in the 21st Century:

Foundations, Developments and Challenges. New

York: Springer International Publishing.

[47] Vijayasarathy, R. L., & Butler, W. C. (2016). Choice of

Software Development Methodologies: Do

Organizational, Project and Team Characteristics

Matter? IEEE Software, Volume 33 , 86-94.

[48] Wasson, S. C. (2015). System Engineering: Analysis,

Design and Development Principles. New Jersey: John

Wiley and Sons, Inc.

[49] West, D. (2011). Water-Scrum-Fall Is The Reality Of

Agile For Most Organizations Today. Cambridge:

Forrester Research, Inc.

Paper ID: ART2019554 DOI: 10.21275/ART2019554 602

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

