
A Reliable and Secure Distributed In-Network Data
Storage Scheme in Wireless Sensor Networks

Muhammad Bashir Abdullahi, Guojun Wang*, and Felix Musau
School of Information Science and Engineering

Central South University
Changsha, Hunan Province, P. R. China, 410083
∗Correspondence to: csgjwang@mail.csu.edu.cn

Abstract—In a battlefield surveillance scenario, data readings
and events emerging from a wireless sensor network deployed
that may not be used immediately by or simply impossible to
transmit to an authorized user (a Soldier) in real time are stored
in the network. Without proper protection for the sensitive data
generated in this setting, a compromised storage node (by an
enemy soldier) may divulge its stored sensitive data about the
monitored environment, and even worse, it may alter the data. In
this paper, we integrate an elliptic curve cryptography scheme
and an erasure coding scheme to provide reliable and secure
distributed in-network data storage for sensor networks. The
main idea is to distribute each erasure coded fragment appended
with a fingerprint to different storage nodes. The fingerprint is
to allow each coded data fragment to be independently verified
as a valid and correct subset of a specific data item. So, the
scheme achieves localization of data error. The proposed scheme
is resilient to collusion attack, pollution attack, and data dropping
attack, and guarantees forward and backward data secrecy
as well. The security of the proposed scheme relies on the
intractability of the elliptic curve discrete logarithm problem.
Different from the existing solutions, the uniqueness of our
method comes from the use of lightweight encryption scheme,
which is well suited for resource constrained wireless sensors.

Keywords-Wireless sensor network, distributed in-network stor-
age, resiliency, reliability, security, energy consumption.

I. INTRODUCTION

A. Background and Motivation

Wireless sensor networks (WSNs) could be widely de-
ployed for military and civilian applications, such as battlefield
surveillance, environment and habitat monitoring, healthcare
applications, home automation, and traffic control [1]. A WSN
consists of a large number of spatially distributed, autonomous
and resource-constrained sensing devices that cooperatively
provide a useful interface to the physical world with data
acquisition and processing capabilities. Data generated from a
sensor network that may not be used immediately by or simply
impossible to transmit to an authorized user in real time is
stored in the network, either centrally or in a distributed man-
ner for later analysis and querying purposes. The distributed
in-network data storage and query scheme has been identified
as an effective architecture for sensor data management [2],
[3]. Although it is motivated by situations where the data
generated is not accessed in real time, it facilitates not only
energy savings, but also long-term data storage. We consider
an in-network storage architecture where, beside regular sensor

nodes, some set of nodes are selected as storage nodes. These
storage nodes are responsible for storing the data generated
by regular sensor nodes and at regular time interval off-load
to an authorized external sink node or a trusted external entity
when it is available (i.e., connected to the network). We adopt
the dispersal protocol proposed in ref.[7]. However, some
application areas (e.g. military battlefield surveillance and
health care monitoring scenarios) impose severe privacy and
security requirements on data transmissions, data processing
and data management. Therefore, the role played by storage
nodes in such sensor networks make them vulnerable to
various security attacks; especially that they off-load their
stored data at a pre-determined interval of time. The adversary
can easily compromise some storage nodes within a particular
time interval. A compromised storage node may divulge its
stored sensitive data to the adversary, return spurious or in-
complete data readings for a query, exhibit Byzantine failures,
and maliciously drop important data items. These attacks are
detrimental to the integrity, confidentiality, and availability
of data and consequently prevent the authorized users from
retrieving the original data correctly.

Therefore, in order to provide the reliability and security
of the sensitive data throughout its lifetime, we employ a
distributed in-network storage scheme in which a sensor node
splits its collected data into slices (also known as data shadows
or data fragments) and stores each slice at different storage
nodes in a sensor network. This makes the data more secure
against Byzantine failures and unauthorized access. In other
words, this means that no single storage node should be
allowed to store a complete data set or observe all query
results. Consequently, any forged or incomplete data item
should be detected by the authorized data collector as soon as
possible. Also, any compromised malicious storage node that
exhibits Byzantine behaviors should be detected and isolated.

Intuitively, data reliability and integrity are salient, indis-
pensable ingredients of dependable and secure data storage
architecture, but realizing them in a lightweight manner for
resource poor sensor network requires further optimization.
The previous solutions to this problem for distributed in-
network data storage in sensor networks were proposed in
ref.[4] and ref.[5]. The solutions have some drawbacks: the
amount of redundancy is high and subsequent increase in
energy consumption and memory, algebraic signatures used

2011 International Joint Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11

978-0-7695-4600-1/11 $26.00 © 2011 IEEE

DOI 10.1109/TrustCom.2011.71

548

for data integrity checking are not cryptographically secure
because it is easy to construct two strings that have the same
algebraic signature, and their schemes also require two sym-
metric encryptions and decryptions and two sets of polynomial
evaluations, which consumes more energy. The solution in
ref.[6] did achieve lower energy consumption but only a read-
only adversary scenario is considered. Thus, the scheme in
ref.[6] did not address integrity checking scheme. In our case,
we consider both read-only and read-write adversary scenarios.

B. Our Contributions

In this paper, we present a reliable and secure distributed
in-network data storage scheme for resource-constrained sen-
sor networks based on the combination of an elliptic curve
cryptography scheme and an erasure coding scheme. The goal
is to ensure energy-efficient data reliability and security. The
efficiency of the scheme is evaluated in terms of computation
cost, communication cost, and memory overhead.

We integrate an elliptic curve based stateful public-key
encryption (PKE) scheme [8] and an authenticated encryption
mode - offset codebook (OCB) [9] to provide not only the con-
fidentiality, integrity and authentication, but also the forward
and backward secrecy of data confidentiality at lower energy
consumption and memory overhead. By forward and backward
secrecy, we mean, even if the secret key of the source node
is disclosed, the confidentiality of the data before and after
the disclosure are not affected. Reducing the computation cost
of the PKE scheme for energy constrained sensor networks
is of particular importance. Thus, our choice in combining
the two schemes was based on their energy-efficiency gain in
maintaining state and one pass of the block cipher. The elliptic
curve based stateful PKE scheme is used only to generate
key for encryption and decryption. It allows a sender to
maintain a “state” that is re-used across different encryptions.
Thus,it reduces the number of computations required for
discrete logarithm based public-key encryptions. The scheme
needs just one point multiplication each for encryption and
decryption of the key [8], thereby reducing the computational
overhead compared to “stateless” schemes. On the other hand,
the OCB is a block cipher mode of operation that provides
both data confidentiality and authentication in only one pass
over the plaintext, and it avoids ciphertext expansion [9].
In contrast, previous solutions use an encryption mode that
requires two passes over the plaintext (one for authentication
and one for encryption), which as a result, increases the energy
consumption.

To achieve data link reliability, bandwidth saving and mem-
ory space per storage node, we use an erasure coding scheme
(e.g., Reed-Solomon code - RS code [10]), which involves en-
coding a data into a set of redundant fragments that guarantee
the original data recovery against pollution attack. To provide
probabilistic high reliability that a storage node maintains and
responds with a valid coded data fragment that corresponds
to the same data item during the reconstruction, we propose a
simple and efficient data fragment integrity and consistency
verification scheme. This allows each erasure coded data

fragment to be verified independently as a complete, unaltered
and valid copy that corresponds to a specific data item. For
each erasure coded data fragment, a fingerprint (or verification
metadata) is generated before distribution. An erasure coded
data fragment and its corresponding verification metadata are
stored on the same storage node. The security of the scheme
relies on the one-way property of a hash function.

In brief, the contributions of this paper are threefold: first,
we use OCB mode of encryption instead of CBC-encryption
and CBC-MAC for a symmetric encryption scheme, not only
for the cost of OCB that is about 54% of the cost of CBC
encryption combined with CBC MAC, but also for the key
used for OCB that is a single block-cipher key, and all block-
cipher invocations are keyed by this one key, saving memory
space and key-setup time [11]. Second, the amount of traffic
(or redundancy) is minimal and consequently lower memory
overhead per storage node. We use only (n, l)RS instead of
both (n, l) secret sharing (SS) scheme and (n, l)RS as used
in the existing approaches. Third, a simple and lightweight
data fragment integrity and consistency checking scheme is
presented to ensure partial data integrity and consistency
verifications independently during the reconstruction phase.

II. RELATED WORK

A hybrid encryption is a scheme that uses a public-key
algorithm to establish and encrypt a key that is then used to
encrypt an actual message using a symmetric-key algorithm
[12]. The public-key algorithm used is called a key encap-
sulation mechanism (KEM) and the symmetric-key algorithm
used is called a data encapsulation mechanism (DEM) [12].
Cramer and Shoup have shown that this hybrid cryptosystem
is secure against chosen ciphertext attack (CCA-secure) if both
KEM and DEM are CCA-secure [12].

One of the public-key cryptosystems that are based on the
hybrid encryption is the Diffie-Hellman integrated encryption
scheme (DHIES) proposed by Abdalla et al [13]. The ellip-
tic curve version is ECIES. ECIES has been proven to be
semantically secure against adaptive chosen-ciphertext attacks
under the assumptions that (i) the encryption scheme used
is secure, (ii) the message authentication code algorithm is
secure, and (iii) certain non-standard variants of the Diffie-
Hellman problem are intractable [13].

The advantage of ECIES over the Massey-Omura and El-
Gamal public-key methods is that it provides the capability of
encrypting arbitrary bit strings without increasing the number
of group operations for encryption and decryption, and without
increasing the key sizes, while the other methods require a
message to be a group element. Moreover, they are not secure
against chosen-ciphertext attack [13],[14].

Bellare et al.[8] presented two schemes on how to sig-
nificantly speedup the PKE by simply allowing a sender to
maintain a “state” (i.e. maintaining the random ephemeral
secret key value and its corresponding public key value as
state, so that both need not to be computed each time.) that
is re-used across different encryptions. The schemes reduce
the number of computations required for discrete logarithm

549

based public-key encryptions. One of the schemes is a stateful
version of DHIES (or StDH). Baek et al.[15] further reduced
the communication overhead in their implementation of the
stateful PKE in WSNs by introducing a technique known as
“indexing”. The indexing technique replaces the repeated part
of the ciphertext, which is usually long, by a short string.

Wang et al.[4] and Ren et al.[5] independently proposed a
secure and dependable distributed in-network storage scheme
for WSNs. The schemes are based on the principles of perfect
secret sharing (SS) and Reed-Solomon (RS) coding schemes to
achieve reliability and fault-tolerant data storage in WSNs. The
schemes employ SS and RS to encode the generated random
session key and the sensed data into the required shares,
respectively. To ensure distributed data integrity checking, the
schemes use algebraic signatures technique [19], whereby the
source node generates a distinct parity based on all data shares
and appends the parity to each data share. Once a shareholder
initiates an integrity verification protocol, other shareholders
can also act as a verifier to validate the integrity of the stored
data shares as long as they have the corresponding parities.
The validity of integrity of a data share can be ascertained
only if its signature is combined with a sufficient number of
signatures of other corresponding data shares. The schemes
assumed that every node in the network generates data and at
the same time stores its neighbors’ data.

Similarly, Ren et al.[6] considers the same system, in which
an optimized data distribution scheme is proposed. The authors
assumed that each node has a probability vector that shows the
security level of its neighbors set. Thus, neighbors with lower
probability of being compromised than the threshold value are
selected to store its generated data. The scheme considers only
a read-only adversary scenario. However, the scheme achieves
both forward and backward secrecy of data confidentiality. In
contrast, we consider a system where the data generated at a
sensor node are hashed to different locations in the network
for storage. This is to ensure efficient query by directing it to
the location of the storage nodes rather than flooding the entire
network. We consider scenarios where an adversary is either
read-only, read-write or both. And we achieve both forward
and backward secrecy.

III. MODELS AND ASSUMPTIONS

A. System Model

We consider a wireless sensor network consisting of a
mobile sink (MS) and a densely deployed sensor nodes. For
ease of description, we denote data generating sensor nodes by
r-nodes and data storage nodes by s-nodes. Each sensor node
has a unique identity and knows its geographic coordinates.
We assume that each sensor node generates data readings; each
associated to a data type, and at the end of a certain time
interval sends the generated data to the temporary repository
s-nodes. The generated data stored at the s-nodes are collected
by the MS when it is available (i.e., connected to the network).
We assume that each data generated can be represented as a
matrix of equal sized data vectors, whose symbols are elements
from a Galois field. We assume that all sensor nodes are

loosely synchronized with MS. With loosely synchronization,
we mean the entire network lifetime is divided into fixed time
intervals known as epochs. Thus, every sensor node is aware
of the beginning and the end of an epoch.

Each data generated in an epoch by a r-node is managed
by a set of s-nodes called a storage domain (i.e. s-domain),
which may support any number of r-nodes. The set of s-nodes
that comprise this s-domain are selected by means of a hash
operation applied on the corresponding data type to a particular
sensed data, which returns a pair of geographic coordinate in
the sensor field [16]. We adopt the dispersal protocol in ref.[7],
which first identifies a home node (i.e., the sensor node that is
closer to the coordinate (x, y) = h(data type)), and then stores
the replicas of the data in a ball of sensors centered in the home
node (i.e. in the set of sensors within a given distance from
the home node) rather than in the home perimeter as proposed
in ref.[16]. We assume that each r-node encrypts its generated
data readings using a MS’s public key (or alternatively, by the
group public key of authorized users). To store and retrieve an
encrypted data we employ put(data type, D, Q) and get(data
type) primitives, respectively [7],[17]; where D denotes the
data and Q the required number of s-node.

B. Trust Requirements

Since MS serves as an interface between a sensor network
and outside of the network, compromising it can render the
entire network useless. For this reason, we assume that MS is
always trustworthy and sufficiently powerful to defend itself
against any security threats.

C. Attack Model

We assume that the adversary roams around the network
and randomly compromises one or more different sensor nodes
within a certain time interval; especially between successive
visits of the MS. We envisaged two categories of security
attacks:

• Passive attack: this is by eavesdropping incoming and
outgoing messages on currently compromised nodes in
an attempt to learn about the sensed data. This is a read-
only attack.

• Active attack: If an s-node is compromised and under
the full control of an adversary, the adversary can access
and even modify the data stored on that s-node and
also instruct the s-node to drop data, return forge or
incomplete data in response to queries from MS. Also,
some compromised s-nodes may collude and pull their
shares together in order to reconstruct the origiinal data.
This is a read-write attack.

Therefore, our goals are to ensure data reliability and security
for in-network sensor data storage under the above mentioned
attacks, and to achieve localization of data error and depend-
ability in a lightweight manner.

D. Preliminary

Erasure Coding Scheme: An erasure code takes l data
symbols and makes n encoded symbols, out of which any

550

l encoded symbols are enough to recover the original l data
symbols, where n and l are integers. An example of such a
code is Reed-Solomon (RS) code [10]. RS code is a code
defined over GF(2q). The codes may be obtained by letting
a message M = (m1,m2, ..,mn) denotes the coefficient of a
polynomial P(x) =

∑l−1
j=0 mjxj and letting the encoding of M

be C(M) = (c1,...,cn), where ci = P(αi) and αi,...,αn are n
distinct elements of GF(2q). A RS code is specified as (n,
l)RS with s-bits symbols. This means that, the encoder is a
probabilistic algorithm that takes l data symbols of s-bits each
and adds parity symbols to make an n symbols codeword.
Thus, there are n − l parity symbols of s-bits each. While a
decoder is a deterministic algorithm that takes any l symbols
codeword to reconstruct the original l data symbols. This
means that, it can correct up to e symbols that contain errors
in a codeword, where 2e = n − l. If a r-node wants to send
an l-digit plaintext data D, using RS code, it will send n =
l + 2s digits, and be well guaranteed that the correct data can
be reconstructed at the other end, if there are fewer than s
corrupted digits.

IV. RELIABLE AND SECURE IN-NETWORK STORAGE

The proposed scheme integrates ECIES and the erasure
coding scheme to provide data reliability and security for
distributed in-network sensor data storage. It is divided into
basic and enhanced schemes. To simplify the description of
our scheme, we describe it in terms of data items between a
r-node, a set of s-nodes of an s-domain and a MS.

A. Basic Scheme Description

The basic scheme contains the following phases:
Setup phase: The MS selects an elliptic curve E defined

over a GF(p) of size p, where p is a large prime number
and a system base point G (G �= O, where O is a point at
infinity) of order q, where q is also a large prime number
on that curve. The MS then chooses a message authentication
code function, MAC, a CCA-secure symmetric block cipher
encryption scheme, Encrypt and Decrypt, a key derivation
function, H, of length η and E domain parameters T = (p, a, b,
G, q, h) [18]. Then, the MS generates at random d ∈rGF(2q)
and computes Q = dG. The MS then makes all the parameters
(E, G, q, Q) public and conceals d as its private key.

Data Encryption phase: Each r-node u, firstly downloads
MS’s public key (E, G, q, Q), then chooses a random integer
w ∈rGF(2q) to compute X = wG as its ephemeral public key
and Y = wQ as an implied shared secret value with the MS.
Then it computes key K = H(X‖Q‖Y)and splits it into two
by applying hash function H repeatedly on K to obtain keys
of length λj as �k1‖k2� (i.e. k1 is followed by k2, where k1
is a key for Encrypt and k2 is a key for MAC); where ki =
H(K‖i‖Y) for i = 1, .., n and n = �λ/η�. The plaintext data Du

is encrypted as M = Encrypt(k1, Du) and its tag τ = MAC(k2,
M) and returned Cu = {X‖M‖τ} as ciphertext [18].

Data Fragment Generation phase: Each r-node u, uses the
(n, l)RS code to encode a ciphertext Cu into n data fragments
denoted as Cu = {cu,1cu,2, ..., cu,n} For each coded data

fragment, it also generates verification metadata to be used
during the reconstruction phase for integrity and consistency
check. Detailed description is in section V.

Data Distribution phase: Each r-node u randomly selects
n s-nodes without replacement from an s-domain using the
dispersal protocol in ref.[7]. For each s-node v (where v =
1,..,n), u employs put primitive in ref.[7] to distribute for
storage the fragment Fu,v = Encrypt(kuv, (u‖fid‖cu,i‖Vi)),
Where is a pairwise secret key shared with an s-node v. Then
it erases the original Cu and the verification metadata from its
memory.

Data Reconstruction phase: To reconstruct data, MS collects
any l shares from l honest s-nodes in an s-domain, using get
primitive as described in ref.[7] and then reconstructs Cu based
on (n, l)RS code. Assuming l = �n × δ�, where δ is a security
parameter (e.g. 0.5 ∼ 0.8) [5]. The larger the value of δ, the
higher the percentage of shares required for reconstruction.

Observation: It is interesting to note that an s-node v might
be malicious and unreliable due to the hostile environment. It
might deliberately alter or respond with a spurious or different
(that corresponds to another data item) data fragment in its
storage so as to hamper data reconstruction process. However,
tolerating random Byzantine failures also requires coping with
data consistency. Therefore, it is insufficient to detect that
a Byzantine behavior has occurred after reconstructing to a
wrong value. Secondly, it will be difficult at that time, to
actually detect the s-node(s) that misbehaved. Thus, it is a
matter of importance to guard against this ill behavior prior to
reconstruction. The benefits are enormous: (i) it saves time for
re-reconstruction; as it is only the first l valid shares that will
be collected and validated, (ii) it helps to detect unreliable s-
node(s), i.e., ensures localization of data error(s). We present
a simple and lightweight scheme that will enable a MS to
perform integrity and consistency check for each received
coded fragment; independently, before reconstruction.

Data Decryption phase: The MS first computes the secret
value Y = dX using its secret key d. Then it computes key K
= H(X‖Q‖Y) and splits it into �k1‖k2� as explained earlier.
It then computes tag τ = MAC(k2,M), if it is not equal to
τ , MS stops and rejects the ciphertext. Otherwise, it continues
and then decrypts Du = Decrypt(k1, M) as a plaintext.

Discussion: The basic scheme is indistinguishably secure
against chosen-ciphertext attacks (IND-CCA) as it offers
both integrity/authentication and confidentiality services [12].
However, it is relatively inefficient in our setting; especially,
where a r-node encrypts, splits and distributes all the data
it generated in an epoch. A r-node is a constrained device
that lacks sufficient amount of energy to carry out all the
operations for a significantly long period of network lifetime.
The encrypt-then-MAC construction using CBC-encryption
and CBC-MAC employed in the basic scheme require a r-node
to process a long message and a long ciphertext separately
thereby doubles the amount of computation and consequently
the energy consumption. In addition, there is a tendency of
message expansion in the basic scheme. Therefore, we present
in the next section an efficient scheme that achieves the same

551

level of security at lower energy consumption.

B. Enhanced Scheme

To achieve lower energy consumption, we employ two
techniques in KEM-part and DEM-part of the hybrid en-
cryption scheme, respectively. We employ a modified Diffie-
Hellman based stateful public key encryption (PKE) scheme
in WSNs[15] and OCB, a block cipher mode of operation
that offers both authentication and confidentiality in only one
pass of a block cipher [9]. Combining these two schemes will
reduce the cost of encryption and decryption to half [8].

Recall that, the original stateful PKE [8] is a scheme
that allows a sender to maintain a state, which is re-used
across different encryptions thereby reducing the computation
overhead, optimizes only the KEM-part of the hybrid cryp-
tosystem. This scheme is further improved by Baek et al.
[15] to save the communication overhead. The long ephemeral
public key, which must be transmitted for a number of different
sessions, is replaced with a much shorter string using an
indexing method. The index is a combination of a unique
identity of a sender and a sequence number for the current
epoch. Ideally, in the beginning (i.e., indexing phase), both the
sender’s ephemeral public key and the index will be sent to the
receiver for identity correlation and caching (for further details
see [15]). At least that adds little communication overhead.
Subsequently, only the index will be sent (i.e., normal phase)
to the receiver, as described below.

In our enhanced scheme, we will describe only the phases
that have been optimized.

Data Encryption phase: Each r-node u, firstly downloads
MS’s public key (E, G, q, Q), then chooses a random integer
w ∈rGF(2q) to compute X = wG as its ephemeral public key
and Y = wQ as an implied shared secret value with the MS.
Then it chooses an index IX = (idX‖t) for its ephemeral
public key, X, in such a way that uniquely identifies it [15],
and computes key K = H(IX‖X‖Q‖Y). The plaintext data Du

is encrypted now, using OCB mode of encryption, by firstly
choosing a non-repeating nonce Nu ∈ {0, 1}∗, which can be a
monotonically increasing counter and then computes [M, τ] =
ocbEncrypt(K, Nu,A,Du). The OCB [9] takes as input the key,
the nonce, the associated data and the plaintext data to generate
the ciphertext core and then, simultaneously, generates a tag
using the plaintext, the generated ciphertext and the associated
data. It returns, deterministically, either a ciphertext Cu =
{IX‖M‖τ} or the distinguished value Invalid, ⊥ [9].

Data Decryption phase: The MS firstly searches its database
for X that corresponds to IX ; if it does not exist, MS stops
and rejects the ciphertext; otherwise, it continues to compute
the secret value Y = dX using its secret key d. Then it
computes key K = H(IX‖X‖Q‖Y). Finally, it then computes
Du = ocbDecrypt(K, Nu,A,Cu) if it returns a different tag τ ,
MS stops and rejects the ciphertext. Otherwise, it accepts Du

as a plaintext.
Discussion: In the proposed schemes the forward and back-

ward secrecy of a compromised s-node are guaranteed. The
adversary gets no secret knowledge that will enable it to

decrypt data, even if it compromises one or more s-nodes.
Besides, each time a r-node u wants to send data generated
Du to s-node v for storage, it uses the MS’s public key to
control the encryption procedure, and the MS uses its key pair
to control the decryption operation [18]. Thus, it is hard for
an adversary who does not possess MS’s secret key to recover
plaintext Du from its ciphertext Cu.

V. LIGHTWEIGHT PARTIAL DATA INTEGRITY CHECKING

Indeed, s-nodes are often not trusted in terms of reliability
and security for data-sensitive sensor network applications, due
to hostile and unattended nature of the environment in which
they are deployed. Intuitively, tolerating Byzantine failures
also requires coping with consistency of the partial data. It
is insufficient to detect that a Byzantine behavior has taken
place after reconstructing to a wrong value without detecting
the misbehaving s-node. Thus, there is need to provide a
probabilistic high reliability for the integrity and consistency of
the stored data fragment before and during data reconstruction,
and at the same time detects unreliable s-node(s).

A. Fingerprint Generation and Distribution

In this section, we describe the process of generating and
distributing a verification metadata in our scheme.

To generate a verification metadata (or fingerprint) for each
data fragment in a lightweight manner, we reuse the effort
expended in generating the key for the encryption. Thus, a
r-node u first splits K into n keys as explained in section
IV-A (i.e. k1, k2, .., kn). Let the n erasure coded fragment
be cu,1, cu,2, ..., cu,n. We use fid = HK(cu,1‖cu,2‖...‖cu,n)
as the identifier for the set of coded fragment belonging to
the same data item, where HK(•) is a keyed cryptographic
hash function. The r-node u then generates the metadata
Vi = zi ⊕ cu,i mod p, where zi = HK(t‖fid‖ki‖i), t is the
epoch round and i = 1...n is the key index that corresponds
to the number of coded fragments. At the end of the data
distribution phase a r-node u stores each erasure coded frag-
ment with its corresponding verification metadata on a distinct
randomly selected s-nodes. The r-node u then deletes from its
memory the original data, verification metadata and the coded
fragments. This is shown in detail in Algorithm 1.

Algorithm 1: Fingerprint Generation and Distribution

1: Input: t← epoch, Cu ← cu,1, cu,2, ..., cu,n, K = H(X‖Q‖Y)
2: Output: Vi and Fu,v = Encrypt(kuv, (u‖fid‖cu,i‖Vi))
3: Compute ki = H(K‖i‖Y) for i = 1, .., n and n = �λ/η�
4: Compute fid = HK(cu,1‖cu,2‖...‖cu,n)
5: for (i← 1 to n) do
6: Compute zi = HK(t‖fid‖ki‖i)
7: Compute Vi = zi ⊕ cu,i mod p
8: u→ v : Fu,v = Encrypt(kuv, (u‖fid‖cu,i‖Vi))
9: end for
10:end

B. Verification of Partial Data Integrity and Consistency

In Prior to reconstruction of Cu based on (n, l) RS code, an
MS performs integrity and consistency check through voting
on each coded fragment received to ascertain that it is a

552

Algorithm 2: Verification of Partial Data Integrity and Consistency

1: Input: t← epoch, v→ MS : (fid‖cu,i‖Vi)
2: Output: “Valid”or “Invalid”
3: MS generate its key pair K= H(X‖Q‖Y);
4: Compute ki = H(K‖i‖Y) for i = 1, .., n and n = �λ/η�
5: for (i← 1 to m) do // where m ≤ n
6: Compute z′i = HK(t‖fid‖ki‖i)
7: Compute V′

i = zi ⊕ cu,i mod p
8: if V′

i 	= Vi then
9 return “Invalid”and reject cu,i for reconstruction
10: else
11: return “Valid”and accept cu,i for reconstruction
12: end if
13:end for
14:end

valid copy and at the same time corresponds to the data
item requested. It first generates its key pair for decryption
as explained earlier. Then it splits K into n keys (i.e. k1,
k2,..., kn). For each coded fragment received it computes z′i
= HK(t‖fid‖ki‖i) and generates V′

i = zi ⊕ cu,i mod p and
compares if V′

i �= Vi then it is invalid and rejects it. Otherwise
it accepts the fragment as valid and belongs to the requested
data item. This shows that the integrity and consistency check
is correct and secure. The s-node v should not pass verification
check unless it is in possession of a complete and unaltered
version of its data share. If the coded fragment received from
an s-node v return invalid after verification, then it is evident
that s-node v is misbehaving. Consequently, necessary steps
can be taken to isolate it from the network. This is shown in
detail in Algorithm 2.

The attractiveness of this verification scheme relies on the
fact that: (i) no s-node v can generate a valid metadata and
pass verification without being detected; (ii) the amount of
communication required between an s-node and the MS is
minimal and (iii) it is efficient in terms of computation -
hash and exclusive-or operations. The security of the scheme
relies on the existence of a collision-resistant hash function
and the difficulty in the derivation of the key that controls
both the encryption and decryption processes due to elliptic
curve discrete logarithm problem.

VI. SECURITY AND PERFORMANCE ANALYSIS

In this section, we evaluate the security of our scheme in
terms of collusion attack, eavesdropping attack, data dropping
attack, and pollution attack and then its performance analysis.

A. Security Analysis

Collusion attack: In this attack, some compromised s-nodes
illegally conspire by pulling together their shares in order to
reconstruct or extract the original data. This is possible if they
have access to the decryption key. However, it is impossible
to reconstruct the original data even though more than (n −
l) compromised s-nodes, storing coded data fragments of the
same data item, Du, collude together or even at worst with a r-
node u that initially encrypted the data. It is hard to derive the
key for decryption due to the elliptic curve discrete logarithm
problem. Because the original data was encrypted using MS’s
public key, it can be decrypted by only MS’s corresponding

private key. Moreover, a r-node u has erased the ciphertext
from its memory. Thus, colluding attacks by the compromised
s-nodes cannot succeed. Besides, their collusion cannot afford
them any secret knowledge that will enable them to decrypt
stored data at any time. This assures a perfect forward and
backward secrecy of data confidentiality.

Eavesdropping attack: Here the adversary snoops on the
transmitted messages as they travel to the storage areas to
learn the contents. A r-node u encrypts and splits all data
into fragments, which individually has no useful information
before multicast. Therefore, the adversary learns nothing from
the fragments.

Pollution attack: Here some compromised s-nodes mali-
ciously modified their data shares so as to hamper reconstruc-
tion. They will succeed if they passed verification undetected
by constructing a valid fingerprint. However, it is hard to derive
the key for encryption and decryption due to the elliptic curve
logarithm problem. Besides, MS can reconstruct the whole data
from any l or more data fragments of the l honest s-nodes of an
s-domain due to properties of the (n, l)RS coding scheme that
can correct up to e symbols that contain errors in a codeword,
where 2e = n − l. Thus, even though (n − l) or less dishonest
s-nodes alter their data fragments or misbehave in a Byzantine
way.

Data dropping attack: Here some compromised s-nodes
dropped their data shares so as to hamper reconstruction.
The attack will succeed if l + 1 s-nodes holding data shares
corresponding to the same data item dropped their shares.
Otherwise, MS can reconstruct the whole data from any l or
more data fragments of the l honest s-nodes of an s-domain
due to properties of the (n, l)RS coding scheme.

B. Performance Analysis

Here we analyze the computation cost, the communication
cost and the storage cost during data encryption, data encod-
ing, data distribution, fingerprint generation and verification.
Then we detailed performance evaluation results obtained
using MATLAB and also compare the efficiency with the
existing schemes [4], [5] and [6].

Computation Cost: At each epoch, a r-node u uses StDH
scheme to only generate key K = H(IX‖X‖Q‖Y) used for en-
cryption. To achieve this, it performs one point multiplication
Y = wQ and one hash operation. Then it uses OCB mode to
encrypt the data. It performs two Elliptic Curve based encryp-
tions: Fu,v = Encrypt(kuv, (•)) and [M, τ] = ocbEncrypt(•).
A r-node uses (n, l)RS code to encode Cu = {IX‖M‖τ}
into n data fragments. To generate a verification metadata,
Vi = zi ⊕ cu,i mod p, it performs ki = H(•), fid = HK(•)
and zi = HK(•) hash operations, n XOR and n modulo
reduction operations. Following the example of analysis in [4]
and [6], let α, β, γ and μ denote the size of (IX‖X‖Q‖Y),
(cu,1‖cu,2‖...‖cu,n), (K‖i‖Y) and (t‖fid‖ki‖i), respectively.
The total computation cost at the r-node u is PtMul1 + Hash1

α

+ ECCEncrypt2 + RSCoding1 + Hash1β + Hashnγ + Hashnμ +
Xorn + Modn, where PtMul1 denotes one point multiplication,
Hash1α denotes one hash operation with input size of α,

553

TABLE I
SUMMARY OF COMPUTATION COST

Entity Total Computation Cost

r-node PtMul1 + Hash1α + ECCEncrypt2 + RSCoding1 +
Hash1β + Hashnγ + Hashnμ + Xorn + Modn

s-node ECCDecrypt1

TABLE II
SUMMARY OF COMMUNICATION AND STORAGE COSTS

Entity Communication Cost Storage Cost

r-node n ∗
(
π
n
+ 4

)
∗ q 2 ∗ q

s-node
(
π
n
+ 2

)
∗ q

(
π
n
+ 4

)
∗ q

TABLE III
COMPARISON OF COMMUNICATION AND STORAGE COSTS

Scheme Communication Cost Storage Cost

Ours n ∗
(
π
n
+ 4

)
∗ q

(
π
n
+ 6

)
∗ q

Ref.[4], [5] n ∗
(
π
n
+ ω + 5

)
∗ q

(
π
n
+ ω + 5

)
∗ q

Ref. [6] n ∗
(
π
n
+ 2

)
∗ q

(
π
n
+ nbi + 2

)
∗ q

ECCEncrypt2 denotes two Elliptic Curve based encryptions,
RSCoding1 denotes one (n, l)RS code operation, Xorn denotes
n XOR operations, and Modn denotes n modulo reductions.
However, when a r-node u keeps (w, X) as its internal state
information that it re-uses across different encryptions; it need
not to compute Y = wQ each time.

Thus, it has reduced the cost of point multiplication. The
computation cost at an s-node v is only one Elliptic Curve
based decryption operation. The total computation cost at an
s-node v is ECCDecrypt1. The summary is shown in Table I.

Communication Cost: Let’s assume that all symbols used
are elements of a Galois Field GF(2q), where q = 8 or 16.
After a r-node u uses (n, l)RS code to encode Cu of size π,
into n fragments; each data fragment will be π

n symbols. It
then distributes Encrypt(kuv, (u‖fid‖cu,i‖Vi)) to n s-nodes in
an s-domain as data shares. Thus, the communication cost at
the r-node u is approximately n ∗ (

π
n + 4

) ∗ q bits. During
integrity verification, at least m ≤ n s-nodes (m denotes the
first l honest s-nodes) send (fid‖cu,i‖Vi) to MS. Therefore, the
communication cost at an s-node v is approximately

(
π
n + 2

)∗
q bits. The summary is shown in Table II.

Storage Cost: Each r-node u requires 2 ∗ q bits storage cost
to keep (w, X) as internal state information. Each s-node v
requires

(
π
n + 4

) ∗ q bits storage cost to keep the data share.
The summary is shown in Table II.

we compare the efficiency of our proposed enhanced scheme
with the existing schemes [4], [5] and [6]. The existing
schemes [4] and [5] suffer from high energy consumption and
high redundancy bits. In our scheme, we employ OCB, as it
provides secrecy and authentication in only one pass of block
cipher and with only one key. Furthermore, the ciphertext has
the same length of the plaintext. Also as it only requires a
nonce, not an Initialization Vector (IV), and there is a distinct
difference. A nonce does not drop security if an adversary
can guess the next one, but an IV can cause this problem.

TABLE IV
COMPARISON OF SECURITY PROPERTIES

Property Ref.[4], [5] Ref.[6] Ours
Public Key No No Yes

Cryptography
Symmetric Key Yes Yes No
Cryptography

Integrity Check Yes No Yes
Forward Partial Yes Yes
Secrecy

Backward Probabilistic Enhanced Perfect
Secrecy Probabilistic

The existing schemes [4], [5], [6] and our basic scheme
provide the same security guarantee, but use an encryption
scheme that requires two passes of the block cipher: one
pass achieves secrecy with CBC-encryption, and another pass
achieves authenticity with CBC-MAC. Thus, it doubles the
amount of computation, and consequently doubles the amount
of energy consumption. Besides, the cost of OCB is about 54%
of the cost of CBC encryption combined with CBC MAC.

During data distribution, the existing schemes [4] and [5]
use two sets of encoding techniques to generate data frag-
ments: one set uses the (n, l)RS code to partition original
data of l-symbols into n-symbols data fragments with (n − l)
redundant symbols and another set uses the (n, m)SS scheme to
obtain n shares of the random session key (RSK). The (n, m)SS
scheme requires that the size of any share be at least the same
size as the original secret. Hence, the amount of redundancy
bits used doubles and consequently consumes more energy in
terms of computation and communication and subsequently
more storage space at the storage nodes. Table III summarizes
the cost of communication and storage during data distribution
among the existing schemes and the proposed scheme. Let ω
be the size of the RSK and nbi be the number of neighbors
to node i. Thus, from the analysis it shows that the proposed
scheme is more efficient compare to the existing schemes.

Fig.1 shows the comparison of communication overhead
during data distribution to the storage nodes. The following
parameters are used: n = 5, 10, 15, 20, 25, 30, 35, 40; π =
1024, q = 8; |RSK| = ω = 64bits and |nbi| = 20. As we
can see, the cost is proportional to the size of the packet
distributed. The existing schemes [4] and [5] consumed more
energy as huge amount of data with multiple redundancy bits
are transmitted. The scheme in ref. [6] consumed relatively
less energy than our scheme as no information on data integrity
check is transmitted.

Fig. 2 shows the comparison of storage cost during data
distribution. The trends are the same; meaning that the more
the number of storage nodes the less the size of share per
storage node. The existing schemes [4] and [5] consumed
more storage space as huge amount of data with multiple
redundancy bits are stored. The increase in the cost of storage
in ref. [6] is as a result of keeping probability vectors of its
neighbors. As we can see our scheme consumed less storage
space.

554

0 10 20 30 40
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Storage Nodes

C
om

m
un

ic
at

io
n

C
os

t

 Ours
 Ref[4, 5]
 Ref[6]

Fig. 1. Comparison of Communication Cost During Data Distribution

0 10 20 30 40
200

400

600

800

1000

1200

1400

Number of Storage Nodes

S
to

ra
ge

 C
os

t

 Ours
 Ref[4, 5]
 Ref[6]

Fig. 2. Comparison of Storage Cost During Data Distribution

VII. CONCLUSION

In this paper, we presented a scheme for reliable and
secure distributed in-network data storage in wireless sen-
sor networks. We integrate an elliptic curve based stateful
PKE scheme and an authenticated encryption mode, offset
codebook (OCB) and the Reed-Solomon codes to achieve
data reliability and security with low energy consumption,
and low memory overhead. To provide probabilistic high
reliability of partial data integrity and consistency during data
reconstruction, we further proposed a simple and lightweight
partial data integrity and consistency checking scheme. Each
data share is verified independently thereby help to localize
data error efficiently. The security of the proposed integrity
checking scheme relies on the one-way property of a hash
function and the difficulty in the derivation of the key that
controls both the encryption and decryption processes due to
the elliptic curve discrete logarithm problem. Our schemes
achieved perfect forward and backward secrecy. Extensive
security and performance analysis showed that the proposed
scheme is secure and energy efficient compared to the existing

schemes.
In the future, we plan to work on a trust-based data dis-

tribution scheme and an efficient integrity-preserving scheme
that will address how to repair a corrupted or deleted data
share from the existing uncorrupted ones without involving
the source node.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China under grant number 61073037 and 61103035,
and Hunan Provincial Science and Technology Program under
grant numbers 2010GK2003 and 2010GK3005.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey”, Computer Networks: Elsevier Science 38(4),
Mar. 2002, pp. 393-422.

[2] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, “Data-
centric storage in sensornets”, ACM SIGCOMM Computer Communica-
tions Review 33(1), Jan. 2003, pp. 137-142.

[3] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy, “Rethinking data
management for storage-centric sensor networks”, Proc. of the Third
Biennial CIDR 2007, Jan. 2007, pp. 22-32.

[4] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and secure sensor
data storage with dynamic integrity assurance”, in Proc. of the IEEE
INFOCOM 2009, Rio de Janeiro, Brazil, April 2009, pp. 954-962.

[5] W. Ren, Y. Ren, and H. Zhang, “Secure, dependable and publicly veri-
fiable distributed data storage in unattended wireless sensor networks”,
Science China Information Sciences 53(5), April 2010, pp. 964-979.

[6] Y. Ren, V. Oleshchuk, and F. Y. Li, “A scheme for secure and reliable
distributed data storage in unattended WSNs”, In Proc. GLOBECOM
2010, 1-6.

[7] M. Albano, S. Chessa, F. Nidito, and S. Pelagatti, “Q-NIGHT: adding qos
to data centric storage in non-uniform sensor networks”, In Proc. MDM
2007. pp. 166-173.

[8] M. Bellare, T. Kohno, and V. Shoup, “Stateful public-key cryptosystems:
how to encrypt with one 160-bit exponentiation”, Proc. of ACM CCS
2006, pp. 380-389, 2006.

[9] Krovetz T. and Rogaway, P. “The software performance of authenticated-
encryption mode”, Fast Software Encryption - FSE 2011, LNCS, Springer
(2011)

[10] S. Reed, and G. Solomon, “Polynomial codes over certain finite fields”,
Journal of the SIAM 8(2), (1960), pp. 300-304.

[11] P. Rogaway, M. Bellare, and J. Black, “OCB: a block-Cipher mode of
operation for efficient authenticated encryption”, Proc. of ACM TISSEC,
6 (3), pp. 365-403, Aug. 2003.

[12] R. Cramer, and V. Shoup, “Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack”,
SIAM Journal of Computing, 33(1), pp. 167-226, 2003.

[13] M. Abdalla, M. Bellare and P. Rogaway, “The oracle Diffie-Hellman
assumptions and an analysis of DHIES”, Topics in Cryptography - CT-
RSA 2001, LNCS vol. 2020, pp. 143-158, Springer-Verlag, 2001.

[14] L. C. Washington, Elliptic Curves: Number Theory and Cryptography,
2nd edition. Chapman and Hall/CRC, Taylor and Francis Group, LLC,
2008.

[15] J. Baek, H. C. Tan, J. Zhou, and J. W. Wong, “Realizing stateful public
key encryption in wireless sensor network”, Proc. of the IFIP TC 11 23rd
IFIP-SEC 2008, pp. 95-108, Springer-Verlag, 2008.

[16] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and
F. Yu, “Data-centric storage in sensornets with GHT a geographic hash
table”, Mobile Networks and Applications, 8(4),(2003), pp. 427-442.

[17] M. Albano, and S. Chessa, “Distributed erasure coding in data centric
storage for wireless sensor networks”, in Proc. ISCC 2009, pp. 22-27.

[18] D. R. L. Brown, Standards for Efficient Cryptography 1(SEC-1), Certi-
com Research. http://www.secg.org/secg docs.htm.

[19] W. Litwin and T. Schwarz, “Algebraic signature for scalable distributed
data structure”, in Proc. of the 20th ICDE 2004, pp. 412-423.

555

