Riarald University

Nurturing Innovators

SCHOOL OF EDUCATION

SEPTEMBER - DECEMBER 2019 END OF SEMESTER EXAMINATION REGULAR PROGRAMME
 EXAMINATION FOR BACHELOR OF EDUCATION (ARTS)
 REM 414: DIFFERENTIAL CALCULUS

INSTRUCTOR: JOHN MBUTHI
DATE: $9^{\text {TH }}$ DECEMBER 2019
TIME: 2HOURS

GENERAL INSTRUCTIONS:

Students are NOT permitted to write on the examination paper during reading time.
This is a closed book examination. Text books/reference books/notes are not permitted.

SPECIAL INSTRUCTIONS:

1. Write your ADMISSION NUMBER clearly on the cover of the answer booklet(s).
2. Answer Question ONE and ANY OTHER TWO questions.
3. Questions in all sections should be answered in answer booklet(s).
4. Marks allocated to each question are shown at the end of the question.
5. PLEASE start the answer to EACH question on a NEW PAGE.
6. Indicate the number of the questions answered on the cover of the answer booklet(s) in the order you answered them.
7. Write your answers in paragraph form unless stated otherwise.
8. Keep your phone(s) SWITCHED OFF at the front of the examination room.
9. Keep ALL bags and caps at the front of the examination room and do not refer to any unauthorized material before or during the course of the examination.
10. You are only allowed to leave the examination room 30 minutes to the end of the Examination.

QUESTION ONE: COMPULSORY (30 MARKS)

a. Evaluate the following indefinite integrals:

1. $\int 3 x\left(2 x^{2}-5\right)^{2} \mathrm{~d} x$
2. $\int\left(x \ln x+\frac{1}{x \ln x}\right) d x$
[5 marks]
3. $\int \frac{\cos ^{3} x+\sin x}{\cos ^{2} x} d x$
[5 marks]
b. Evaluate the following definite integrals:
4. $\int_{\ln \frac{1}{2}}^{2}\left(e^{t}-e^{-t}\right) d t$
[5 marks]
5. $\int_{e}^{e^{2}} \frac{3}{x \ln x} d x$
[5 marks]
6. $\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}-\frac{\pi}{2}\right) d x$
[5 marks]

QUESTION TWO

a. Find the function $f(x)$ whose tangent has slope $x^{3}-\frac{2}{x^{2}}+2$ for each value of x and whose graph passes through the point $(1,3)$.
b. It is projected that t years from now, the population of a certain community in Kenya will be changing at the rate of $e^{0.02 t}$ million per year. If the current population is 50 million, estimate the population of this community after 10 years.
[12 marks]

QUESTION THREE

a. It is estimated that t days from now a farmer's crop will be increasing at the rate of $0.3 t^{2}+0.6 t+1$ bushel per day. Determine by how much the value of the crop will increase during the next 5 days if the market price remains fixed at 3 Euros per bushel. ?
b. Find the area bounded by the curves $y=x^{2}-2 x$ and $y=-x^{2}+4$

QUESTION FOUR

a. An object moves along a straight line with acceleration given by $\frac{d v}{d t}=1-\sin (\pi t)$. Given that when $\mathrm{t}=0, \mathrm{~s}(\mathrm{t})=\mathrm{v}(\mathrm{t})=0$, find:
i. The velocity function
[5 marks]
ii. The distance function, of the object.
b. Find the volume of the solid obtained by revolving the region bounded by $y=x-x^{2}$ and the x-axis around the x-axis.
[10 marks]

QUESTION FIVE

a. Find the arc length of $\left.f(x)=\frac{1}{3}\left(x^{2}+2\right)\right)^{\frac{\pi}{2}}$ on the interval $[0, a]$
[10 marks]
b. Compute the area of the surface formed when $\mathrm{f}(\mathrm{x})=y=2 \sqrt{x-1})$ between -1 and 0 is rotated around the x -axis.
[10 marks]

