

UNIVERSITY EXAMINATIONS

EXAMINATION FOR SEPTEMBER/DECEMBER 2019/2020 FOR BACHELOR OF SCIENCE IN COMPUTER SCIENCE

RCCS 108: COMPUTER ORGANIZATION & ASSEMBLY LANGAUGE.

DATE: 19TH DECEMBER 2019 TIME: 2 HOURS

GENERAL INSTRUCTIONS:

Students are NOT permitted to write on the examination paper during examination time.

This is a closed book examination. Text book/Reference books/notes are not permitted.

SPECIAL INSTRUCTIONS:

This examination paper consists Questions in Section A followed by section B.

Answer **Question 1 and any Other Two** questions.

QUESTIONS in ALL Sections should be answered in answer booklet(s).

- 1. PLEASE start the answer to EACH question on a NEW PAGE.
- 2. Keep your phone(s) switched off at the front of the examination room.
- 3. Keep ALL bags and caps at the front of the examination room and DO NOT refer to ANY unauthorized material before or during the course of the examination.
- 4. ALWAYS show your working.
- 5. Marks indicated in parenthesis i.e. () will be awarded for clear and logical answers.
- 6. Write your REGISTRATION No. clearly on the answer booklet(s).
- 7. For the Questions, write the number of the question on the answer booklet(s) in the order you answered them.
- 8. Calculator will be required, DO NOT use your PHONE as a CALCULATOR.
- 9. YOU are ONLY ALLOWED to leave the exam room 30minutes to the end of the Exam.
- 10. DO NOT write on the QUESTION PAPER. Use the back of your BOOKLET for any calculations or rough work.
- 11. Intel 8085 Microprocessor Instruction Set provided at back pages.

SECTION A (COMPULSORY)

Question (1) - (30Marks)

a)	What is th	e purpose of following hardware in computers systems? (6 Marks)
	i.	FSB.	
	ii.	SSD.	
	iii.	DMAC.	
	iv.	North Bridge.	
	v.	South Bridge.	
b)	What is the	e difference between RAM and Cache?	(4 Marks)
c)	_	ect to computer memory, state and describe THREE types of ROM ypes of RAM.	and (6 Marks)
d)	Outline an	d explain differences between RISC and CISC architectures.	(6 Marks)
e)	A compute	er system has 16 bits data buses, 32 bits address buses, and 8 bit cont	rol buses.
	i ii		(1 Marks) (2 Marks)
f)	What are t	he major differences between High Level languages and Low Level	languages? (5 Marks)

SECTION B (Answer Any Two Questions)

Question (2) - (20Marks)

- a) Define the following terminologies as used in computing. (8 Marks)
 - i. BIOS.
 - ii. R.I.S.C.
 - iii. C.I.S.C.
 - iv. Pipelining.
 - v. Multiprocessing.
 - vi. Hyper threading.
 - vii. Parallel computing.
 - viii. Dynamic Execution.
- b) With respect processors clock frequency and parallel processing, discus how speed of processing could be affected and the advantages and disadvantages of each. (4 Marks)
- c) Explain the purpose of the following Intel 8085 Processor Instructions. (6 Marks)
 - i. HLT
 - ii. NOP
 - iii. INX H
 - iv. **OUT** $F8_h$
 - v. **JNZ** 2034h
 - vi. **STA** 4000H
- d) What is the purpose of the Assembler?

(2 Marks)

Question (3) - (20Marks)

- a) Describe in *DETAILS*, the *FETCH EXECUTE CYCLE* of a microprocessor during the instruction execution. (7 Marks)
- b) State and explain the purpose of any **FIVE** major types of registers likely to be found in typical microprocessors. (10 Marks)
- c) Explain how the direct memory access controller would improve computation performance in a computer. (3 Marks)

Question (4) - (20Marks)

- a) With reference to Intel-8085 microprocessor, write a program to multiply two numbers stored in the memory locations ABC0 _{Hex} & ABC1 _{Hex} respectfully, and then store the result of the operation in the memory location ABCD _{Hex}. (8 Marks)
- b) Considering the flag register of the Intel 8085 microprocessor, describe the operation of the bit components shown below. (5 Marks)

- c) With respect to computer architectures, explain main differences between the Harvard and the Von Neumann architectures of computers. (3 Marks)
- d) Name FOUR categories/classifications of instructions in assembly language. (4 Marks)

Question (5) - (20Marks)

a) Assuming that the assembly language program below was executed in an 8085 microprocessor based system. What will be the contents of registers (A, B, C, D, E, H and L), after executing the instructions? (Express results in hexadecimal format).
Assume that the registers had the following data initially. (7 Marks)

Registers	Reg A	Reg B	Reg C	Reg D	Reg E	Reg H	Reg L
Data	FFhex	06hex	04 _{hex}	ABhex	CDhex	F3hex	8Ehex

Instruction	Comments
XRA A	
MVI B, F7 Hex	
MOV D,A	
MOV C,A	
ADC B	
INX D	
XCHG	

- b) Given 8-chips of (16K X 8) and a (3 to 8) decoder, design a memory module for the Intel 8085 based system, showing the data & address buses clearly. (8 Marks)
- c) Assemble the assembly language program below (next page), hence determine the amount of memory required to run the code. (5 Marks)

Assembly Language Source Code Program:

$LXIH$, 2000_{hex}	//- Comments
MOVB, M	//
INXL	//
MOVC, M	//
XOR A	//
ADC B	//
STA 4000 _{hex}	//
OUT 80 hex	//
HLT	//

INTEL 8085 MICROPROCESSOR INSTRUCTION SET

Hex	mnemonic	Hex	mnemonic	Hex	mnen	nonic	Hex	mnemonic
CE	ACI 8-Bit	3F	CMC	2B	DCX	H	01	LXI B,16-Bit
8F	ADC A	BF	CMP A	3B	DCX	SP	11	LXI D,16-Bit
88	ADC B	B8	CMP B	F3	DI		21	LXI H,16-Bit
89	ADC C	B9	CMP C	FB	EI		31	LXI SP,16-Bit
8A	ADC D	BA	CMP D	76	HLT		7F	MOV A A
8B	ADC E	BB	CMP E	DB	IN	8-Bit	78	MOV A B
8C	ADC H	BC	CMP H	3C	INR	A	79	MOV A C
8D	ADC L	BD	CMP	04	INR	В	7A	MOV A D
8E	ADC M	BE	CMP M	0C	INR	C	7B	MOV A E
87	ADD A	D4	CNC 16-Bit	14	INR	D	7C	MOV A H
80	ADD B	C4	CNZ 16-Bit	1C	INR	E	7D	MOVAL
81	ADD C	F4	CP 16-Bit	24	INR	H	7E	MOV A M
82	ADD D	EC	CPE 16-Bit	2C	INR	L	47	MOV BA
83	ADD E	FE	CPI 8-Bit	34	INR	M	40	MOV BB
84	ADD H	E4	CPO 16-Bit	03	INX	В	41	MOV BC
85	ADD L	CC	CZ 16-Bit	13	INX	D	42	MOV BD
86	ADD M	27	DAA	23	INX	H	43	MOV BE
C6	ADI 8-Bit	09	DAD B	33	INX	SP	44	MOV BH
A7	ANA A	19	DAD D	DA	JC	16-Bit	45	MOV BL
A0	ANA B	29	DAD H	FA	JM	16-Bit	46	MOV BM
A1	ANA C	39	DAD SP	C3	JMP	16-Bit	4F	MOV CA
A2	ANA D	3D	DCR A	D2	JNC	16-Bit	48	MOV CB
A3	ANA E	05	DCR B	C2	JNC	16-Bit	49	MOV CC
A4	ANA H	0D	DCR C	F2	JP	16-Bit	4A	MOV CD
A5	ANA L	15	DCR D	EA	JPE	16-Bit	4B	MOV CE
A6	ANA M	1D	DCR E	E2	JPO	16-Bit	4C	MOV CH
E6	ANA 8-Bit	25	DCR H	CA	JZ	16-Bit	4D	MOV CL
CD	CALL 16-Bit	2D	DCR L	3A	LDA	16-Bit	4E	MOV CM
DC	CC 16-Bit	35	DCR M	0A	LDA	ХВ	57	MOV DA
FC	CM 16-Bit	0B	DCX B	1A	LDA	X D	50	MOV DB
2F	CMA	1B	DCX D	2A	LHLI) 16-Bit	51	MOV DC

Hex	mnemonic	Hex	mnemonic	Hex	mnemonic	Hex	mnemo	nic
52	MOV DD	71	MOV M C	E5	PUSH H	9E	SBB	M
53	MOV DE	72	MOV MD	F5	PUSH PSW	DE	SBI	8-Bit
54	MOV DH	73	MOV ME	17	RAL	22	SHLD	16-Bit
55	MOV DL	74	MOV MH	1F	RAR	30	SIM	
56	MOV DM	75	MOV ML	D8	RC	F9	SPHL	
5F	MOV EA	3E	MVI A 8-Bit	C9	RET	32	STA	16-Bit
58	MOV EB	06	MVI B 8-Bit	20	RIM	02	STAX	В
59	MOV E C	OE	MVI C 8-Bit	07	RLC	12	STAX	D
5A	MOV E D	16	MVI D 8-Bit	F8	RM	37	STC	
5B	MOV EE	1E	MOV E 8-Bit	D0	RNC	97	SUB	A
5C	MOV EH	26	MVI H 8-Bit	C0	RNC	90	SUB	В
5D	MOV EL	2E	MVI L 8-Bit	F0	RP	91	SUB	C
5E	MOV EM	36	MVI M 8-Bit	E8	RPE	92	SUB	D
67	MOV HA	00	NOP	E0	RPO	93	SUB	E
60	MOV HB	B7	ORA A	0F	RRC	94	SUB	H
61	MOV HC	B0	ORA B	C7	RST 0	95	SUB	L
62	MOV HD	B1	ORA C	CF	RST 1	96	SUB	M
63	MOV HE	B 2	ORA D	D7	RST 2	D6	SUI	16-Bi
64	MOV HH	B3	ORA E	DF	RST 3	EB	XCHG	
65	MOV HL	B4	ORA H	E7	RST 4	AF	XRA	A
66	MOV HM	B 5	ORA L	EF	RST 5	A8	XRA	В
6F	MOV LA	B6	ORA M	F7	RST 6	A9	XRA	C
68	MOV LB	F6	ORI 8-Bit	FF	RST 7	AA	XRA	D
69	MOV LC	D3	OUT 8-Bit	C8	RZ	AB	XRA	E
6A	MOV L D	E9	PCHL	9F	SBB A	AC	XRA	H
6B	MOV LE	C1	POP B	98	SBB B	AD	XRA	L
6C	MOV LH	D1	POP D	99	SBB C	AE	XRA	M
6D	MOV LL	E1	POP H	9A	SBB D	EE	XRI	8-Bit
6E	MOV LM	F1	POP PSW	9B	SBB E	E3	XTHL	
77	MOV MA	C5	PUSH B	9C	SBB H	De la Maria		
70	MOV MB	D5	PUSH D	9D	SBB L			