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Abstract 

The explosive growth of digital media content from various domains has given rise to the need for 
efficient techniques for retrieval of relevant information is getting more and more attention, especially 
in the large-scale Multimedia Digital Database (MDD) applications. It is for this reason that there has 
been an increased interest in the query reformulation for use in Multimedia Information Retrieval 
(MIR) using a combination of various techniques. In this paper, we propose a retrieval method that is 
formalized as an optimized similarity search process that combines Singular Value Decomposition 
(SVD), Query Quality Refinement (QQR) using Histogram Equalization and Genetic Algorithm (GA) 
enhancement. Experimental results show that the approach significantly narrows the search process by 
retrieving similar images satisfying the needs of the user. 

 
Keywords: Multimedia Information Retrieval, Similarity Search, Genetic Algorithms, 

 Singular Value Decomposition, Histogram Equalization, Query Quality Refinement. 
 

1. Introduction 
 
The explosion of multimedia content in many domains has generated new requirements for more 

effective access to the global information repositories contained in them. Content extraction, indexing, 
and retrieval of multimedia data continue to be one of the most challenging and fastest-growing 
research areas [1].In particular, there  is need to have robust techniques to retrieve multimedia 
information with new scalable browsing algorithms allowing access to very large multimedia databases, 
and semantic visual interfaces integrating the above components into a unified multimedia browsing 
and retrieval system. The focus of any information retrieval system is the ability by a user to search for 
relevant information within a collection of data which is relevant to the user’s query by searching for 
matches from the document database. Efficient image searching, browsing and retrieval tools are 
required for such databases by users from various domains, including remote sensing, fashion, crime 
prevention, publishing, medicine, architecture, etc [2]. Though modern search algorithms are fast and 
effective on a wide range of problems, on Multimedia Digital Databases (MDD) with normally large 
number of parameters and a large number of observations, the search might not be as effective. The 
objects in the multimedia domain are treated as objects in a metric space, which can be compared with 
a metric function appropriately defined. The search technique that can be applied in such a case is an 
optimization problem for finding closest points of the features in the metric spaces. These closest 
points between a query vector and retrieved image gives rise to similarity data retrieval. Similarity 
search techniques in the large sets of complex MDD depend on good search algorithms and indexing 
structures. A wide range of methods have been proposed and Singular Value Decomposition (SVD) is 
one of them. SVD is a linear algebra decomposition technique applied for calculating singular values, 
pseudo-inverse and rank of a matrix. It has been shown experimentally and probabilistically that SVD 
should be able to expose the most striking similarities between a given vector and another set of 
vectors [2]. To improve the quality of an image from the human visual perspective, Query Quality 
Refinement (QQR) is carried out by enhancing the results from SVD similarity search using Histogram 
Equalization (HE).HE does so by enlarging the intensity difference among objects and background 
[3].However, the histogram equalization method often generates unnatural images with extreme 
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contrast .So in order to obtain good contrast images suitable for the similarity search, the image is 
finally enhanced by GA .This image query result is the one that is re- used in the final retrieval 
optimization process. Figure 1 shows the framework of our proposed MIR system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1. The MIR System Framework. 
 
The similarity between the query and retrieved image is measured by different retrieval strategies 

that are based on the more frequent terms found in both the image and the query.  
The remainder of this paper is structured as follows: Section 2 briefly introduces Multimedia 
information retrieval and the application of SVD to multimedia information retrieval, section 3 
discuses Image query quality refinement using histogram equalization while enhancement with genetic 
algorithms is presented in section 4. Section 5 shows the experiments and results, and section 6 gives 
the conclusion of the paper. 

 
2. Multimedia information retrieval 

 
The Complex data in multimedia systems usually do not have the total ordering property presented 

by the traditional data handled by Database Management Systems [4]. The documents in such systems 
demands Information Retrieval functionality that no classical method is able to answer, due to the 
medium mismatch problem. In the image database field, this is often called the medium clash problem. 
This problem refers to the fact that, when documents and queries are expressed in different media, 
matching is difficult, as there is an inherent intermediate mapping process that needs to reformulate the 
concepts expressed in the medium used for queries in terms of the other medium (e.g., images) [5].The 
vast amount of digital information in such databases have created a worldwide challenging need for 
new paradigms and techniques on how to browse, search and summarize multimedia collections. 
Generally, to afford an efficient multimedia content retrieval and consumption, a Multimedia 
Information Retrieval (MIR) System is required. The central concern of MIR system is easily stated: 
given a complex collection of information objects in multimedia documents (i.e., a complex 
information object), with components of different kinds, find those that are relevant to information 
needs of the user. The focus of any MIR system is its ability to search for information relevant to a 
user's needs within a collection of complex multimedia data. We can say therefore that the main goal of 
the MIR system is to help a user locate the most similar documents that have the potential to satisfy the 
user information needs. The earliest years of MIR were frequently based on computer vision 
algorithms which focused on feature based similarity search over images, video, and audio. Within a 
few years, the basic concept of the similarity search was transferred to several Internet image search 
engines including Webseek and Webseer [6]. Recently, there has been a surge of interest in a wide 
variety of media, and therefore the user seeking for the information can supply image, video, speech 
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etc, as the query input. In this paper, we limit the scope of our work to the treatment of multimedia 
information retrieval using images. This media is by far the most investigated and therefore best 
understood one, therefore it suits the foundational work we are presenting here for MIR. The objects in 
the multimedia domain are treated as objects in a metric space, which can be compared with a metric 
function appropriately defined. A query in a multimedia database system usually requests the most 
similar objects to a given query object or a manually entered query specification. In response to this 
demand, a wide range of methods for Multimedia Information Retrieval have been produced, often 
based on techniques largely foreign to the IR field. Some popular techniques transform image features 
into discrete elements or terms. These so-called visual terms" are elegant because they enable image 
content to be described in much the same way as a text document. Techniques for creating visual terms 
from features almost always revolve around the idea of using linear algebra techniques to decompose 
the original image matrix into a set of reduced rank approximation that exposes the most striking 
similarities while preserving most of the relevant information. From the viewpoint of linear algebra, we 
can observe that a discrete image that we are limiting our scope to is an array of non-negative scalar 
entries which may be regarded as a matrix. Let such an image be designated as an image matrix X. 
Without loss of generality, we assume in the subsequent discussions that X is a MIR square image. 
Given a multimedia query object, the search for an exact match in a database requires the development 
of efficient and effective similarity search technique for the image matrix X. The technique described 
and applied in this paper for retrieving similar operators of multimedia documents makes use of a 
mathematical factorization called the Singular Value Decomposition (SVD). Briefly, SVD is used to 
decompose an image matrix X into the product of three separate matrices. 

 
2.1. Singular value decomposition technique applied to multimedia information retrieval 

 
Decomposition technique is an essential step for MIR data. The general criterion for decomposing 

the dimension is the desire to preserve most of the relevant information of the original MIR data 
according to some optimality criteria. Singular Value Decomposition (SVD) has been used in our work 
since it provided a method for decomposition and discovering correlations within the data. SVD is used 
to expose the most striking similarities between a given individual and a strategically chosen 
population of individuals [2]. It decomposes the large data matrix into a set of k orthogonal factors. The 
fewer important dimensions corresponding to “noise” due to word-choice variability are ignored. A 
reduced rank approximation to the original matrix is constructed by dropping these noisy dimensions 
[7]. In our proposal, SVD is used to deal with solving the difficult linear_least squares color problems 
terms in documents case. The first task is to represent the MIR image data as a term document matrix X 
(mxn) of rank r whose rows represent genes and columns represent individuals. The SVD expresses X 
as the product of three matrices as in Eq.(1) as: 

 
TX U V                                                                       (1) 

 
The columns of the U matrix are made up of the orthonormal eigenvectors that span the space 

corresponding to the gene-gene auto-correlation matrix TXX  and termed the left eigenvectors. 
Likewise V is a matrix whose columns consist of the orthonormal eigenvectors, termed right 
eigenvectors, that span space corresponding to the individual-individual auto-correlation matrix

TX X .The middle matrix denoted by   is a diagonal matrix with 0ij  for i j  and 0ii iS    

≥ 0 for i . The 'i sS are arranged in descending order with 1 2 ... nS S S   .The 'i sS  are called the 

singular values of X, which indicates the weight, or importance, of a dimension [7]. VT is the transpose 
of V. The singular value decomposition of X can also be represented as shown in Figure 2.  
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Figure2. Singular Value Decomposition model for MIR image representation. 
 
From the view of Figure 2, the dimensions of each center can be reduced from n to k (k<n).So the 

less important dimensions, from k to n, corresponding to “noise” are ignored. The reduced rank 
approximation to the original representation is constructed by dropping these noisy dimensions. 

 
2.2. SVD solution applied in MIR similarity search by colors 

 
Color is mostly a combination of frequencies and is one of the most widely used [8] visual feature 

for content-based image retrieval. It is relatively robust and simple to represent. Various studies of 
color perception and color spaces have been proposed [9], [10]. Color has proven to be a very 
discriminant feature for object recognition and image similarity search on photographic images. Often, 
color histograms are used to describe the dominant colors of an image [11]. The color content of an 
image can be characterized by color histogram h(I, N, P), giving the frequency of occurrence, 
normalized with respect to the overall image pixel number P, each of the N colors quantizing the image 
color space. Besides being effective for characterizing the global color properties of an image, the color 
histogram representation is also useful to define a measure of similarity between two images [12] in a 
Multimedia Digital Database. Even though they are simple, color histograms are very practical in many 
applications due to their computational efficiency. Color histograms, do not capture the spatial 
correlations but instead color characteristic are maintained. Examples of their use in multimedia 
applications include scene break detection and querying a database of images [13]. A color histogram 
based on the full range of color values for the RGB model that uses 24 bits represents an equivalently 

large color vector, ( 242  16M, representing a histogram which is often called the 16M color 
histogram).The color histogram is the most commonly used representation technique, statistically 
describing the combined probabilistic property of the three color channels[14]. Similarity search using 
color vector requires searching for similar vectors in a high dimensional space. At run-time, a current 
Multimedia Digital Databases’ technology of similarity search cannot afford this high dimensional 
space cost. Due to this reason, some dimensionality reduction is needed. To provide for effective 
dimensionality reduction to the problem, SVD approach is used. Since most similarity search in MDD 
is performed by looking at the similarity of images using color properties, the SVD solution to the 
problem is applied by envisioning building a matrix X corresponding to the 16M color histogram of a 
stack of images from which we intend to do image color similarity comparison.  

To decompose the Matrix X, we used the SVD package, SVDPACK, from the NetLib repository. 
The decomposition was performed using the C version iterative las 2 method from SVDPACK for 
computing the SVD of large sparse real matrices for multimedia image data, available at: 
http://www.netlib.org/svdpack/. We carried out the experiments using a stack of several jpeg images 
(133 x 100 pixels), and  constructed 16M (RGB color model) color histograms to build the X matrix: 
columns identify image through a suitable ID while rows describe a color index C (combination of 
R,G,B values giving one of 16M colors values)[15]. We also reduced the effective number of colors in 
the histogram as per [16] and ran our SVD package on intel® Pentium(R) Dual CPU T3200 with 2.00 
HZ, and 1.00 GHZ SDRAM. The N largest values retained as much information about the original 
histograms of the stack of images. The SVD of the jpeg images yielded a new matrix containing the 
left and singular matrices corresponding to the N largest singular values of X [16] as shown in Figure 3. 
The results shows that the values that show the most variability are the retained relevant eigenvalues 
for the problem. 
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Figure 3. Results of a SVD run. 

 
Comparing the similarity of the images on simple color bins histogram verses SVD reduced 

histogram shows that SVD process is an efficient empirical method to reduce the size of any function 
describing image properties for similarity purpose, and the final sparse formatted matrix used lesser 
memory of about 50Mb. 

 
3. Image query quality refinement using histogram equalization 

 
The next step is to refine the image results of the query obtained from the SVD similarity search of 

section3.2.In our proposal, this is done by enhancement through histogram equalization (HE).Image 
enhancement is one of the most important issues in image processing technology. Its main purpose is to 
improve the quality of an image from the human visual perspective. It does so by enlarging the 
intensity difference among objects and background [3]. Image features such as edges, boundaries, and 
contrast are sharpened in a way that their dynamic range is increased without any change in the 
information content inherent in the data [17].There are several techniques that have been developed for 
image enhancement, amongst them include contrast manipulation, noise reduction, HE, edge 
crispening and sharpening, filtering, pseudocoloring, image interpolation and magnification. HE is the 
simplest and most commonly used technique to enhance gray-level images. It is one of the most 
commonly used methods for image contrast enhancement. It is a technique by which the dynamic range 
of the histogram of an image is increased by assigning the intensity values of pixels in the input image 
such that the output image contains a uniform distribution of intensities. The main idea behind HE-
based methods then is to re-assign the intensity values of pixels to make the intensity distribution 
uniform to utmost extent [3].Each pixel is assigned a new intensity value based on its previous 
intensity level. Thus when used for gray scale images, HE attempts to uniformly distribute the pixels of 
an image or just part of an image [18] to all the available gray levels L (e.g L=256, when 8 bits are 
used to represent each gray level). The assumption made by HE is that the pixel gray levels are 
independent identically distributed random variables (rvs) and the image is a realization of an ergodic 
random field. As a consequence, an image is considered to be more informative, when its histogram 
resembles the uniform distribution. From this point of view, grayscale HE exploits the theory of 
functions of the rv that uses the cumulative distribution function (CDF) of pixel intensity in order to 
transform the pixel intensity to a uniformly distributed rv. However, due to the discrete nature of digital 
images, the histogram of the equalized image can be made approximately uniform [19].We suppose the 
gray level r is a continuous quantity and normalized in the range [0,1], with r = 0 representing black 
and r = 1 representing white. Consider the enhancement transform function to be given as 
s=T(r).Assume that the transformation function T(r) satisfies the following two conditions: 

 
1. T( r ) is a single-valued and monotonically increasing for r  in the interval [0,1];  

 
2.                                  for                              

 
0  ( )  1T r  0    1r 
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where n is the total number of pixels in the image, kn  is the number of pixels that have gray level kr ; 

and L is the total number of possible gray levels in the image. Thus, a processed (output) image is 

obtained by mapping each pixel with level kr in the input image into a corresponding pixel with level 

kS in the output image via Eq.(6).The transformation (mapping) given in Equation (3.5) is what is 

referred to as the histogram equalization (HE). So given an image retrieved by SVD application to 
similarity search by colors, the process of enhancing the same for purposes of use in the retrieval of a 
refined and more similar image from the Multimedia Databases implies simply implementing Equation 
(3.5).This procedure re-assigns the intensity values of the pixels and make their distribution uniform.  

 
4. QQR-HE-enhancement with genetic algorithms: the (QQR-HE-GA) process 

 
The GA, initially published by John Holland [20], is used in our proposal to introduce a stochastic 

optimization and global approach for image enhancement and similarity search problems. The basic 
idea behind solving optimization problems, with few cost function evaluations, is to keep good 
solutions through a process of evolutionary competitions [20].GAs have been proven to be the most 
powerful optimization techniques in a large solution space [21]. This explains the increasing popularity 
of GAs applications in image processing.Genetic algorithms (GAs) are not new to information retrieval 
[22]. They have been used to allow for the performance of elegant and robust searches and 
optimization, which are specially useful to finding answers in complex or poorly understood search 
spaces. Boughanem et al. [23], Horng and Yeh [24], and Vrajitoru [25], examine GAs for information 
retrieval and they suggested new crossover and mutation operators. Vrajitoru examined the effect of 
population size on learning ability, concluding that a large population size is important [25].In nature, 
the selective pressure is exerted by the ambient. In a computational context, it is simulated by the 
application of an objective function that evaluates each individual’s fitness. Usually genetic algorithms 
have two problem-dependent components: how to encode the solution space as chromosomes, and how 
to define the objective function [4].The basic idea behind solving optimization problems, with few cost 
function evaluations, is to keep good solutions through a process of evolutionary competitions [20].In 
this paper, we apply Genetic Algorithms (GAs) to further enhance the QQR-HE image quality in order 
to obtain a good contrast image suitable for the similarity search. This is achieved by mapping intensity 
of image values according to the predefined lookup-table (LUT) that defines a relation between input 
gray levels and output gray levels. The approach represents the relations between input and output gray 
levels by a lookup table (LUT), and the relations determined based on a curve by the Genetic 
Algorithm. 

 
4.1. Representation of chromosome 

 
To implement the GA, each possible solution from the image set must be encoded as a simple 

chromosome structure. The size of each chromosome is equal to n, where n represents the number of 
gray levels in the input image. 

Each chromosome x of the image is represented by an integer byte, where each byte (gene) encodes 
the difference b (j-1) between values of transformed curve B (j) and B (j-1,), Figure 5, where j is a byte 
position in the chromosome.  
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as are represented as shown in Eq.(10) and Eq.(11) respectively. 

 
4.3. Selection Algorithm 

 
Selection of the individuals is done based on the fitness value of the solutions. The probability of 

selecting an individual is directly or inversely proportional to its fitness value [29]. The roulette wheel 
selection [30] is applied in our in proposed GA. Only individuals that have higher fitness are selected 
in the population, and they are survived to the next generation. On the other hand, individuals that have 
lower fitness are extinguished in the population because they do not have qualifications to survive to 

the next generation. In the selection process, s cp p individuals are selected to create the same 

number of individuals from them by crossover operator. 
 

4.4. Crossover and mutation operators 
 
Since our proposed method uses the two point crossover, Ps*Pc individuals are selected according 

to our selection process, where Pc is crossover rate. As Ps*Pc new individual is needed after doing 
crossover, two parents are selected and two new child are produced from them. Points in each parent 
are selected randomly and segments between these two points are substituted to produce new 
individuals. Finally, each new individual is sorted in ascending order to preserve structure. For each 
individual, a random number is produced, if it is lower than Pm (mutation constant), mutation will be 
done for that individual as mentioned follow. 5% of the individual chromosome elements are selected 
randomly for mutation. For each element a random integer number that should be less than or equal to 
the next element value and more than or equal to the previous element is generated. This random 
number is replaced by element.  

 
4.5. Terminating criteria 

 
Terminating criteria is a condition that is used for ending the GA procedure. When the best fitness is 

kept a constant in ten generations, the genetic algorithm is completed. In the proposed work, the 
termination criteria is considered when the difference of best fitness in two last consecutive generations 
is less than  .The value of has been considered as 0.02× best_fitness (best_fitness is the fitness of 
last generation). 

 
5. Experiments and results 

 
5.1. QQR-HE experimental results 

 
Figure 6 (a), (b) and (c) shows some of the retrieved SVD RBG images. In the experiments, the 

range of the gray-level values of the images is [0,255]. We have tested our results on 256x256 images 
retrieved from section 2.2. The image sizes are 256x256.  
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